IDEAS home Printed from
   My bibliography  Save this paper

calculation worst-case Value-at-Risk prediction using empirical data under model uncertainty


  • Wentao Hu


Quantification of risk positions under model uncertainty is of crucial importance from both viewpoints of external regulation and internal management. The concept of model uncertainty, sometimes also referred to as model ambiguity. Although we know the family of models, we cannot precisely decide which one to use. Given the set $\mathcal{P}$, the value of the risk measure $\rho$ varies in a range over the set of all possible models. The largest value in such a range is referred to as a worst-case value, and the corresponding model is called a worst scenario. Value-at-Risk(VaR) has become a very popular risk-measurement tool since it was first proposed. Naturally, WVaR(worst-case Value-at-Risk) attracts the attention of many researchers. Although many literatures investigated WVaR, the implications for empirical data analysis remain rare. In this paper, we proposed a special model uncertainty market model to simply the $\mathcal{P}$ to a set contain finite number of probability distributions. The model has the structure of the two-layer mixed distribution model. We used change point detection method to divide the returns series and then used EM algorithm to estimate the parameters. Finally, we calculated VaR, WVaR(worst-case Value-at-Risk) and BVaR(best-case Value-at-Risk) for four financial markets and then analyzed their different performance.

Suggested Citation

  • Wentao Hu, 2019. "calculation worst-case Value-at-Risk prediction using empirical data under model uncertainty," Papers 1908.00982,
  • Handle: RePEc:arx:papers:1908.00982

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Chu-Hsiung Lin & Shan-Shan Shen, 2006. "Can the student-t distribution provide accurate value at risk?," Journal of Risk Finance, Emerald Group Publishing, vol. 7(3), pages 292-300, May.
    2. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    3. Alexandros Gabrielsen & Axel Kirchner & Zhuoshi Liu & Paolo Zagaglia, 2015. "Forecasting Value-At-Risk With Time-Varying Variance, Skewness And Kurtosis In An Exponential Weighted Moving Average Framework," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-29.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
    6. Shige Peng & Shuzhen Yang & Jianfeng Yao, 2018. "Improving Value-at-Risk prediction under model uncertainty," Papers 1805.03890,, revised Jul 2018.
    7. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (US).
    9. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, March.
    10. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    11. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    12. Ryohei Kawata & Masaaki Kijima, 2007. "Value-at-risk in a market subject to regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 609-619.
    13. Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
    14. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, issue Mar, pages 2-13.
    15. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    16. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    17. Denis Talay & Ziyu Zheng, 2002. "Worst case model risk management," Finance and Stochastics, Springer, vol. 6(4), pages 517-537.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. Simai He & Jiawei Zhang & Shuzhong Zhang, 2010. "Bounding Probability of Small Deviation: A Fourth Moment Approach," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 208-232, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.00982. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.