IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i2p38-d1595063.html
   My bibliography  Save this article

Improving Credit Risk Assessment in Uncertain Times: Insights from IFRS 9

Author

Listed:
  • Petr Jakubik

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University, Smetanovo nabrezi 6, 110 01 Prague 1, Czech Republic)

  • Saida Teleu

    (Central Bank of Barbados, Tom Adams Financial Centre, Spry Street, Bridgetown 11126, Barbados
    Department of Accounting and Finance, The School of Business, Anglo-American University in Prague, Letenská 120/5, 118 00 Prague 1, Czech Republic)

Abstract

This study highlights the superior performance of Bayesian Model Averaging (BMA) in credit risk modeling under IFRS 9, particularly during economic uncertainty, such as the COVID-19 pandemic. Using granular bank-level data from Malta, spanning 2017–2023, the analysis integrates macroeconomic scenarios and sector-specific transition matrices to assess credit risk dynamics. Key findings demonstrate BMA’s ability to outperform Single-Equation Models (SEM) in predictive accuracy, robustness, and adaptability. The results emphasize BMA’s resilience to structural economic changes, making it a critical tool for regulatory stress testing and provisioning in small open economies highly exposed to external shocks. This work underscores the importance of forward-looking, flexible frameworks for credit risk management and policy decisions.

Suggested Citation

  • Petr Jakubik & Saida Teleu, 2025. "Improving Credit Risk Assessment in Uncertain Times: Insights from IFRS 9," Risks, MDPI, vol. 13(2), pages 1-20, February.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:2:p:38-:d:1595063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/2/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/2/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    2. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    3. Castrén, Olli & Dées, Stéphane & Zaher, Fadi, 2008. "Global macro-financial shocks and expected default frequencies in the euro area," Working Paper Series 875, European Central Bank.
    4. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    5. Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
    6. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    7. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
    8. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    9. Marco Gross & Javier Población, 2019. "Implications of Model Uncertainty for Bank Stress Testing," Journal of Financial Services Research, Springer;Western Finance Association, vol. 55(1), pages 31-58, February.
    10. Kevin Aretz & Peter F. Pope, 2013. "Common Factors in Default Risk Across Countries and Industries," European Financial Management, European Financial Management Association, vol. 19(1), pages 108-152, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    2. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    3. Johannes Hörner & Nicolas S Lambert, 2021. "Motivational Ratings [Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 1892-1935.
    4. Bermingham, Colin & Conefrey, Thomas, 2014. "The Irish macroeconomic response to an external shock with an application to stress testing," Journal of Policy Modeling, Elsevier, vol. 36(3), pages 454-470.
    5. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    6. Bannier, Christina E. & Hirsch, Christian W., 2010. "The economic function of credit rating agencies - What does the watchlist tell us?," Journal of Banking & Finance, Elsevier, vol. 34(12), pages 3037-3049, December.
    7. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    8. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    9. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    10. Puneet Pasricha & Dharmaraja Selvamuthu & Guglielmo D’Amico & Raimondo Manca, 2020. "Portfolio optimization of credit risky bonds: a semi-Markov process approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    11. Stefan Laseen & Marzie Taheri Sanjani, 2016. "Did the Global Financial Crisis Break the U.S. Phillips Curve?," IMF Working Papers 2016/126, International Monetary Fund.
    12. repec:grz:wpsses:2020-01 is not listed on IDEAS
    13. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    14. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    15. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    16. Brian BARNARD, 2017. "Rating Migration and Bond Valuation: Decomposing Rating Migration Matrices from Market Data via Default Probability Term Structures," Expert Journal of Finance, Sprint Investify, vol. 5(1), pages 49-72.
    17. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    18. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    19. Brian BARNARD, 2017. "Rating Migration and Bond Valuation: Decomposing Rating Migration Matrices from Market Data via Default Probability Term Structures," Expert Journal of Finance, Sprint Investify, vol. 5, pages 49-72.
    20. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    21. Pestova, Anna & Mamonov, Mikhail, 2019. "Should we care? The economic effects of financial sanctions on the Russian economy," BOFIT Discussion Papers 13/2019, Bank of Finland Institute for Emerging Economies (BOFIT).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:2:p:38-:d:1595063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.