IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i9p1816-d1244883.html
   My bibliography  Save this article

Does Labor Aging Inhibit Farmers’ Straw-Returning Behavior? Evidence from Rural Rice Farmers in Southwest China

Author

Listed:
  • Wenfeng Zhou

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Yan Yang

    (Chengdu Agricultural College, Chengdu 611130, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Jia He

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Dingde Xu

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Center for Rural Development Research, College of Management, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

As a typical green production technology, straw return affects environmental pollution control and waste recycling. However, in reality, farmers are not active in returning straw to the field. This study constructed a theoretical analysis of farmers’ straw-returning behavior under the conditions of labor aging, socialization service, and environmental regulation. Based on the survey data from 540 households in the Province of Sichuan, we empirically study the relationship between labor aging and farmers’ straw-returning behavior by using the binary logistic regression model and explore the moderating effects of socialization service and environmental regulation on labor aging and straw-returning behavior. The results show that: (1) Aging laborers in rural households constitute a higher proportion, accounting for 29% of the rural household labor force. However, there is limited enthusiasm among farmers to adopt straw returning to the field, with only 65% of farmers adopting this technology. (2) The labor aging hinders farmers’ straw-returning behavior. Specifically, under other fixed conditions, the behavior of straw returning decreases by 0.647 units when the labor aging increases by one unit. (3) Socialization services and economic incentives can mitigate the adverse effects of labor aging on straw-returning behavior, while mandatory constraints do not. (4) The heterogeneity analysis shows that labor aging has a stronger inhibitory effect on straw-returning behavior when the land scale of farmers is lower than the average level and the area is not plain.

Suggested Citation

  • Wenfeng Zhou & Yan Yang & Jia He & Dingde Xu, 2023. "Does Labor Aging Inhibit Farmers’ Straw-Returning Behavior? Evidence from Rural Rice Farmers in Southwest China," Land, MDPI, vol. 12(9), pages 1-15, September.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1816-:d:1244883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/9/1816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/9/1816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Dingqiang & Ge, Yang & Zhou, Yingheng, 2019. "Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China," Energy Policy, Elsevier, vol. 134(C).
    2. Saha Atanu & H. Alan Love & Robert Schwart, 1994. "Adoption of Emerging Technologies Under Output Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 836-846.
    3. Hou, Lingling & Chen, Xiaoguang & Kuhn, Lena & Huang, Jikun, 2019. "The effectiveness of regulations and technologies on sustainable use of crop residue in Northeast China," Energy Economics, Elsevier, vol. 81(C), pages 519-527.
    4. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    5. He, Ke & Zhang, Junbiao & Wang, Anbang & Chang, Huayi, 2020. "Rural households’ perceived value of energy utilization of crop residues: A case study from China," Renewable Energy, Elsevier, vol. 155(C), pages 286-295.
    6. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.
    7. Babcock, Bruce A. & Shogren, Jason F., 1995. "The cost of agricultural production risk," Agricultural Economics, Blackwell, vol. 12(2), pages 141-150, August.
    8. Liao, Liuwen & Long, Hualou & Gao, Xiaolu & Ma, Enpu, 2019. "Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry," Land Use Policy, Elsevier, vol. 88(C).
    9. Guancheng Guo & Qiyu Wen & Jingjuan Zhu, 2015. "The Impact of Aging Agricultural Labor Population on Farmland Output: From the Perspective of Farmer Preferences," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-7, October.
    10. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    11. Jing Liu & Shichun Du & Zetian Fu, 2021. "The Impact of Rural Population Aging on Farmers’ Cleaner Production Behavior: Evidence from Five Provinces of the North China Plain," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi-Jia & Wang, Qi & Wang, Naihui, 2023. "The role of rationality and altruism in rural households' acceptance of straw energy utilization: Evidence from Northeast China," Energy Policy, Elsevier, vol. 177(C).
    2. Fan Chen & Can Zhang & Wenna Wang, 2022. "Study on the Impact of Internet Use on Farmers’ Straw Returning to the Field: A Micro Survey Data from China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    3. Haibin Chen & Li He & Haiping Tang & Minjuan Zhao & Liqun Shao, 2016. "A Two-Step Strategy for Developing Cultivated Pastures in China that Offer the Advantages of Ecosystem Services," Sustainability, MDPI, vol. 8(4), pages 1-13, April.
    4. Kimhi, Ayal & Rubin, Ofir D., 2006. "Assessing The Response Of Farm Households To Dairy Policy Reform In Israel," Discussion Papers 7134, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    5. Wang, Anbang & He, Ke & Zhang, Junbiao & Zeng, Yangmei, 2021. "Green Production Technologies and Technical Efficiency of Rice Farmers in China: A Case Study of Straw-Derived Biochar," 2021 Conference, August 17-31, 2021, Virtual 315026, International Association of Agricultural Economists.
    6. Chaozhu Li & Xiaoliang Li & Jiaxu Wang & Tianchu Feng, 2023. "Impacts of Aging Agricultural Labor Force on Land Transfer: An Empirical Analysis Based on the China Family Panel Studies," Land, MDPI, vol. 12(2), pages 1-15, January.
    7. Pingping Fang & Yiwen Wang & David Abler & Guanghua Lin, 2023. "Effects of Aging on Labor-Intensive Crop Production from the Perspectives of Landform and Life Cycle Labor Supply: Evidence from Chinese Apple Growers," Agriculture, MDPI, vol. 13(8), pages 1-19, July.
    8. Hao Gai & Tingwu Yan & Anran Zhang & William David Batchelor & Yun Tian, 2021. "Exploring Factors Influencing Farmers’ Continuance Intention to Crop Residue Retention: Evidence from Rural China," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    9. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    10. Shi Zheng & Pei Xu & Zhigang Wang, 2012. "Farmers' adoption of new plant varieties under variety property right protection," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 4(1), pages 124-140, January.
    11. Gedikoglu, Haluk & McCann, Laura M.J. & Artz, Georgeanne M., 2011. "Off-Farm Employment Effects on Adoption of Nutrient Management Practices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-14, August.
    12. Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
    13. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.
    14. Momanyi, Denis & Lagat, Prof. Job K. & Ayuya, Dr. Oscar I., 2016. "Analysis of the Marketing Behaviour of African Indigenous Leafy Vegetables among Smallholder Farmers in Nyamira County, Kenya," MPRA Paper 69202, University Library of Munich, Germany, revised 27 Jan 2016.
    15. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    16. Bangxi Zhang & Tianhong Fu & Chung-Yu Guan & Shihao Cui & Beibei Fan & Yi Tan & Wenhai Luo & Quanquan Wei & Guoxue Li & Yutao Peng, 2022. "Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    17. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    18. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    19. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    20. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1816-:d:1244883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.