IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p2907-d515744.html
   My bibliography  Save this article

Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries

Author

Listed:
  • Mara Madaleno

    (GOVCOPP—Research Unit in Governance, Competitiveness and Public Policy, Department of Economics, Management, Industrial Engineering and Tourism (DEGEIT), University of Aveiro, 3810-193 Aveiro, Portugal)

  • Victor Moutinho

    (Management and Economics Department and NECE-UBI, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal)

Abstract

Decreased greenhouse gas emissions (GHG) are urgently needed in view of global health threat represented by climate change. The goal of this paper is to test the validity of the Environmental Kuznets Curve (EKC) hypothesis, considering less common measures of environmental burden. For that, four different estimations are done, one considering total GHG emissions, and three more taking into account, individually, the three main GHG gases—carbon dioxide (CO 2 ), nitrous oxide (N 2 O), and methane gas (CH 4 )—considering the oldest and most recent economies adhering to the EU27 (the EU 15 (Old Europe) and the EU 12 (New Europe)) separately. Using panel dynamic fixed effects (DFE), dynamic ordinary least squares (DOLS), and fully modified ordinary least squares (FMOLS) techniques, we validate the existence of a U-shaped relationship for all emission proxies considered, and groups of countries in the short-run. Some evidence of this effect also exists in the long-run. However, we were only able to validate the EKC hypothesis for the short-run in EU 12 under DOLS and the short and long-run using FMOLS. Confirmed is the fact that results are sensitive to models and measures adopted. Externalization of problems globally takes a longer period for national policies to correct, turning global measures harder and local environmental proxies more suitable to deeply explore the EKC hypothesis.

Suggested Citation

  • Mara Madaleno & Victor Moutinho, 2021. "Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries," IJERPH, MDPI, vol. 18(6), pages 1-23, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2907-:d:515744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/2907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/2907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    2. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    3. Giray Gozgor & Priya Ranjan, 2017. "Globalisation, inequality and redistribution: Theory and evidence," The World Economy, Wiley Blackwell, vol. 40(12), pages 2704-2751, December.
    4. Peter C. B. Phillips & Mico Loretan, 1991. "Estimating Long-run Economic Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 407-436.
    5. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    6. Dinda, Soumyananda & Coondoo, Dipankor & Pal, Manoranjan, 2000. "Air quality and economic growth: an empirical study," Ecological Economics, Elsevier, vol. 34(3), pages 409-423, September.
    7. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    8. Moutinho, Victor & Varum, Celeste & Madaleno, Mara, 2017. "How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors," Energy Policy, Elsevier, vol. 106(C), pages 326-344.
    9. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    10. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    11. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    12. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    13. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    14. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Maralgua Och, 2017. "Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 117-128.
    17. Erdal, Gülistan & Erdal, Hilmi & Esengün, Kemal, 2008. "The causality between energy consumption and economic growth in Turkey," Energy Policy, Elsevier, vol. 36(10), pages 3838-3842, October.
    18. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    19. Massimiliano Mazzanti & Roberto Zoboli, 2009. "Municipal Waste Kuznets Curves: Evidence on Socio-Economic Drivers and Policy Effectiveness from the EU," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(2), pages 203-230, October.
    20. Muhammad Saqib & François Benhmad, 2020. "Does ecological footprint matter for the shape of the environmental Kuznets curve? Evidence from European countries," Post-Print hal-03515525, HAL.
    21. Chindo Sulaiman & A.S. Abdul-Rahim, 2020. "The Impact of Wood Fuel Energy on Economic Growth in Sub-Saharan Africa: Dynamic Macro-Panel Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    22. Yunpeng Luo & Huai Chen & Qiu'an Zhu & Changhui Peng & Gang Yang & Yanzheng Yang & Yao Zhang, 2014. "Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    23. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    24. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    25. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Lyubimov, Ivan, 2017. "Income inequality revisited 60 years later: Piketty vs Kuznets," Russian Journal of Economics, Elsevier, vol. 3(1), pages 42-53.
    28. Anil Markandya & Alexander Golub & Suzette Pedroso-Galinato, 2006. "Empirical Analysis of National Income and SO 2 Emissions in Selected European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 35(3), pages 221-257, November.
    29. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    30. Armon Rezai & Duncan K. Foley & Lance Taylor, 2016. "Global Warming and Economic Externalities," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 447-470, Springer.
    31. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    32. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    33. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    34. Yang, Haisheng & He, Jie & Chen, Shaoling, 2015. "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an “Extreme Bound Analysis”," Ecological Economics, Elsevier, vol. 109(C), pages 41-58.
    35. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    36. Marrero, Gustavo A., 2010. "Greenhouse gases emissions, growth and the energy mix in Europe," Energy Economics, Elsevier, vol. 32(6), pages 1356-1363, November.
    37. Christopher F Baum, 2001. "Residual diagnostics for cross-section time series regression models," Stata Journal, StataCorp LP, vol. 1(1), pages 101-104, November.
    38. Chen Li & Guohe Huang & Guanhui Cheng & Maosheng Zheng & Nan Zhou, 2019. "Nanomaterials in the Environment: Research Hotspots and Trends," IJERPH, MDPI, vol. 16(24), pages 1-17, December.
    39. Rafael E. De Hoyos & Vasilis Sarafidis, 2006. "Testing for cross-sectional dependence in panel-data models," Stata Journal, StataCorp LP, vol. 6(4), pages 482-496, December.
    40. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    41. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    42. Daniel Armeanu & Georgeta Vintilă & Jean Vasile Andrei & Ştefan Cristian Gherghina & Mihaela Cristina Drăgoi & Cristian Teodor, 2018. "Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    43. Jinfang Sun & Zhichao Zhou & Jing Huang & Guoxing Li, 2020. "A Bibliometric Analysis of the Impacts of Air Pollution on Children," IJERPH, MDPI, vol. 17(4), pages 1-11, February.
    44. Destek, Mehmet Akif & Ulucak, Recep & Dogan, Eyüp, 2018. "Analyzing the Environmental Kuznets Curve for the EU countries: The role of ecological footprint," MPRA Paper 106882, University Library of Munich, Germany.
    45. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    46. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    47. Abid Rashid Gill & Kuperan K. Viswanathan & Sallahuddin Hassan, 2017. "Is Environmental Kuznets Curve Still Relevant?," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 156-165.
    48. Apergis, Nicholas, 2016. "Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 263-271.
    49. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Ruza & Raquel Caro-Carretero, 2022. "The Non-Linear Impact of Financial Development on Environmental Quality and Sustainability: Evidence from G7 Countries," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    2. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    3. Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Muhammad Tanveer & Doaa H. I. Mahmoud, 2021. "Testing the Energy-Environmental Kuznets Curve Hypothesis in the Renewable and Nonrenewable Energy Consumption Models in Egypt," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    4. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    5. Yanjun Zhu & Shidong Yang & Weizhuo Wang & Lingwei Meng & Jingbo Guo, 2022. "Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process," IJERPH, MDPI, vol. 19(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    3. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2020. "The Environmental Kuznets Curve across Australian states and territories," Energy Economics, Elsevier, vol. 90(C).
    5. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    6. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    7. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    8. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    9. Shahbaz, Muhammad & Balsalobre, Daniel & Shahzad, Syed Jawad Hussain, 2018. "The Influencing Factors of CO2 Emissions and the Role of Biomass Energy Consumption: Statistical Experience from G-7 Countries," MPRA Paper 87456, University Library of Munich, Germany, revised 14 Jun 2018.
    10. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    11. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    12. Mehmet Akif, Destek & Muhammad, Shahbaz & Ilyas, Okumus & Shawkat, Hammoudeh & Avik, Sinha, 2020. "The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history," MPRA Paper 100514, University Library of Munich, Germany, revised Apr 2020.
    13. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    14. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    15. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    16. Anh-Tu Nguyen & Shih-Hao Lu & Phuc Thanh Thien Nguyen, 2021. "Validating and Forecasting Carbon Emissions in the Framework of the Environmental Kuznets Curve: The Case of Vietnam," Energies, MDPI, vol. 14(11), pages 1-38, May.
    17. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    18. Frodyma, Katarzyna & Papież, Monika & Śmiech, Sławomir, 2022. "Revisiting the Environmental Kuznets Curve in the European Union countries," Energy, Elsevier, vol. 241(C).
    19. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.
    20. Shahbaz, Muhammad & Sinha, Avik & Ahmad, Shabbir & Jiao, Zhilun & Wang, Zhaohua, 2021. "Role of FDI in Decomposing of Scale and Technique Effects on China’s Energy Consumption," MPRA Paper 111231, University Library of Munich, Germany, revised 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2907-:d:515744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.