IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2749-d552329.html
   My bibliography  Save this article

How to Predict Energy Consumption in BRICS Countries?

Author

Listed:
  • Atif Maqbool Khan

    (Department of Economics, University Centre of Excellence, Interacting Minds, Societies, Environments, Nicolaus Copernicus University, 87-100 Toruń, Poland)

  • Magdalena Osińska

    (Department of Economics, Nicolaus Copernicus University, 87-100 Toruń, Poland)

Abstract

Brazil, Russia, China, India, and the Republic of South Africa (BRICS) represent developing economies facing different energy and economic development challenges. The current study aims to predict energy consumption in BRICS at aggregate and disaggregate levels using the annual time series data set from 1992 to 2019 and to compare results obtained from a set of models. The time-series data are from the British Petroleum (BP-2019) Statistical Review of World Energy. The forecasting methodology bases on a novel Fractional-order Grey Model ( FGM ) with different order parameters. This study contributes to the literature by comparing the forecasting accuracy and the predictive ability of the F G M 1 , 1 with traditional ones, like standard G M 1 , 1 and A R I M A 1 , 1 , 1 models. Moreover, it illustrates the view of BRICS’s nexus of energy consumption at aggregate and disaggregates levels using the latest available data set, which will provide a reliable and broader perspective. The Diebold-Mariano test results confirmed the equal predictive ability of F G M 1 , 1 for a specific range of order parameters and the A R I M A 1 , 1 , 1 model and the usefulness of both approaches for energy consumption efficient forecasting.

Suggested Citation

  • Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2749-:d:552329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiming Duan & Guang Rong Lei & Kailiang Shao, 2018. "Forecasting Crude Oil Consumption in China Using a Grey Prediction Model with an Optimal Fractional-Order Accumulating Operator," Complexity, Hindawi, vol. 2018, pages 1-12, August.
    2. Wu, Xuedong & Mao, Jianxu & Du, Zhaoping & Chang, Yanchao, 2013. "Online training algorithms based single multiplicative neuron model for energy consumption forecasting," Energy, Elsevier, vol. 59(C), pages 126-132.
    3. Ling-Ling Pei & Qin Li, 2019. "Forecasting Quarterly Sales Volume of the New Energy Vehicles Industry in China Using a Data Grouping Approach-Based Nonlinear Grey Bernoulli Model," Sustainability, MDPI, vol. 11(5), pages 1-15, February.
    4. Wei Meng & Daoli Yang & Hui Huang, 2018. "Prediction of China’s Sulfur Dioxide Emissions by Discrete Grey Model with Fractional Order Generation Operators," Complexity, Hindawi, vol. 2018, pages 1-13, January.
    5. Wei Li & Han Xie, 2014. "Geometrical Variable Weights Buffer GM(1,1) Model and Its Application in Forecasting of China’s Energy Consumption," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-6, April.
    6. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    7. Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.
    8. Altinay, Galip & Karagol, Erdal, 2005. "Electricity consumption and economic growth: Evidence from Turkey," Energy Economics, Elsevier, vol. 27(6), pages 849-856, November.
    9. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Menglu Li & Wei Wang & Gejirifu De & Xionghua Ji & Zhongfu Tan, 2018. "Forecasting Carbon Emissions Related to Energy Consumption in Beijing-Tianjin-Hebei Region Based on Grey Prediction Theory and Extreme Learning Machine Optimized by Support Vector Machine Algorithm," Energies, MDPI, vol. 11(9), pages 1-15, September.
    11. Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
    12. Zheng-Xin Wang, 2015. "A Predictive Analysis of Clean Energy Consumption, Economic Growth and Environmental Regulation in China Using an Optimized Grey Dynamic Model," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 437-453, October.
    13. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    14. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    15. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    16. Xuejun Shen & Limin Ou & Xiaojun Chen & Xin Zhang & Xuerui Tan, 2013. "The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    17. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    18. Huan Wang & Jiejun Huang & Han Zhou & Lixue Zhao & Yanbin Yuan, 2019. "An Integrated Variational Mode Decomposition and ARIMA Model to Forecast Air Temperature," Sustainability, MDPI, vol. 11(15), pages 1-11, July.
    19. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    20. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    21. Wolde-Rufael, Yemane, 2006. "Electricity consumption and economic growth: a time series experience for 17 African countries," Energy Policy, Elsevier, vol. 34(10), pages 1106-1114, July.
    22. Lee, Chien-Chiang & Chang, Chun-Ping, 2005. "Structural breaks, energy consumption, and economic growth revisited: Evidence from Taiwan," Energy Economics, Elsevier, vol. 27(6), pages 857-872, November.
    23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    24. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    25. Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
    26. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    27. Richard Schlegel & Ralph W. Pfouts & Werner Hochwald & Glenn L. Johnson, 1973. "The Entropy Law and the Economic Process," Journal of Economic Issues, Taylor & Francis Journals, vol. 7(3), pages 475-499, September.
    28. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    29. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    30. Wen-Ze Wu & Jianming Jiang & Qi Li, 2019. "A Novel Discrete Grey Model and Its Application," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-6, December.
    31. Trotter, Ian M. & Bolkesjø, Torjus Folsland & Féres, José Gustavo & Hollanda, Lavinia, 2016. "Climate change and electricity demand in Brazil: A stochastic approach," Energy, Elsevier, vol. 102(C), pages 596-604.
    32. Peng Zhang & Xin Ma & Kun She, 2019. "A novel power-driven fractional accumulated grey model and its application in forecasting wind energy consumption of China," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-33, December.
    33. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    34. Fatai, K & Oxley, Les & Scrimgeour, F.G, 2004. "Modelling the causal relationship between energy consumption and GDP in New Zealand, Australia, India, Indonesia, The Philippines and Thailand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 431-445.
    35. Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
    36. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    37. Bo Zeng & Meng Zhou & Jun Zhang, 2017. "Forecasting the Energy Consumption of China’s Manufacturing Using a Homologous Grey Prediction Model," Sustainability, MDPI, vol. 9(11), pages 1-16, October.
    38. Oh, Wankeun & Lee, Kihoon, 2004. "Causal relationship between energy consumption and GDP revisited: the case of Korea 1970-1999," Energy Economics, Elsevier, vol. 26(1), pages 51-59, January.
    39. Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
    40. Minglu Ma & Zhuangzhuang Wang, 2019. "Prediction of the Energy Consumption Variation Trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models," Energies, MDPI, vol. 13(1), pages 1-15, December.
    41. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ishaq Bhatti & Ghulam Ghouse, 2022. "Environmentally Friendly Degradations Technology Breakthrough," Energies, MDPI, vol. 15(18), pages 1-5, September.
    2. Siyu Zhang & Liusan Wu & Ming Cheng & Dongqing Zhang, 2022. "Prediction of Whole Social Electricity Consumption in Jiangsu Province Based on Metabolic FGM (1, 1) Model," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
    3. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    4. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Chen Wang & Khalid Eltayeb Elfaki & Xin Zhao & Yuping Shang & Zeeshan Khan, 2022. "International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1451-1461, December.
    6. Lao, Tongfei & Sun, Yanrui, 2022. "Predicting the production and consumption of natural gas in China by using a new grey forecasting method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 295-315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    2. Dube, Smile, 2009. "Foreign Direct Investment and Electricity Consumption on Economic Growth: Evidence from South Africa," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 62(2), pages 175-200.
    3. Ciarreta Antuñano, Aitor & Zárraga Alonso, Ainhoa, 2007. "Electricity consumption and economic growth: evidence from Spain," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    4. Csereklyei, Zsuzsanna & Humer, Stefan, 2012. "Modelling Primary Energy Consumption under Model Uncertainty," Department of Economics Working Paper Series 147, WU Vienna University of Economics and Business.
    5. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    6. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    7. Chor Foon Tang and Eu Chye Tan, 2012. "Electricity Consumption and Economic Growth in Portugal: Evidence from a Multivariate Framework Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Laurine Chikoko & Tawedzerwa Ngundu & Kennedy Kupeta, 2018. "Economic Growth and Electricity Consumption in a Multivariate Framework: A Case of Zimbabwe 1980 to 2016," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 14(5), pages 20-33, OCTOBER.
    9. Yıldırım, Ertugrul & Sukruoglu, Deniz & Aslan, Alper, 2014. "Energy consumption and economic growth in the next 11 countries: The bootstrapped autoregressive metric causality approach," Energy Economics, Elsevier, vol. 44(C), pages 14-21.
    10. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Nermin Ya ar, 2017. "The Relationship between Energy Consumption and Economic Growth: Evidence from Different Income Country Groups," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 86-97.
    12. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    13. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    14. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    15. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    16. Dalia STREIMIKIENE & Rizwan Raheem AHMED & Saghir Pervaiz GHAURI & Muhammad AQIL & Justas STREIMIKIS, 2020. "Forecasting and the Causal Relationship of Sectorial Energy Consumptions and GDP of Pakistan by using AR, ARIMA, and Toda-Yamamoto Wald Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 131-148, July.
    17. Aitor Ciarreta & Ainhoa Zarraga, 2010. "Electricity consumption and economic growth in Spain," Applied Economics Letters, Taylor & Francis Journals, vol. 17(14), pages 1417-1421.
    18. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    19. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2749-:d:552329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.