IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v94y2012icp251-256.html
   My bibliography  Save this article

Forecasting nonlinear time series of energy consumption using a hybrid dynamic model

Author

Listed:
  • Lee, Yi-Shian
  • Tong, Lee-Ing

Abstract

Energy consumption is an important index of the economic development of a country. Rapid changes in industry and the economy strongly affect energy consumption. Although traditional statistical approaches yield accurate forecasts of energy consumption, they may suffer from several limitations such as the need for large data sets and the assumption of a linear formula. This work describes a novel hybrid dynamic approach that combines a dynamic grey model with genetic programming to forecast energy consumption. This proposed approach is utilized to forecast energy consumption because of its excellent accuracy, applicability to cases with limited data sets and ease of computability using mathematical software. Two case studies of energy consumption demonstrate the reliability of the proposed model. Computational results indicate that the proposed approach outperforms other models in forecasting energy consumption.

Suggested Citation

  • Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:251-256
    DOI: 10.1016/j.apenergy.2012.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2009. "Two-level, two-objective evolutionary algorithms for solving unit commitment problems," Applied Energy, Elsevier, vol. 86(7-8), pages 1229-1239, July.
    2. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    3. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    4. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
    5. Delarue, Erik & D'haeseleer, William, 2008. "Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting," Applied Energy, Elsevier, vol. 85(4), pages 171-181, April.
    6. Zhou, Zhi-Jie & Hu, Chang-Hua, 2008. "An effective hybrid approach based on grey and ARMA for forecasting gyro drift," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 525-529.
    7. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    8. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    9. Togun, Necla & Baysec, Sedat, 2010. "Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine," Applied Energy, Elsevier, vol. 87(11), pages 3401-3408, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    5. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    6. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    7. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    8. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    9. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    10. Günay, M. Erdem, 2016. "Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey," Energy Policy, Elsevier, vol. 90(C), pages 92-101.
    11. Fan, Jingjing & Wang, Jianliang & Liu, Mingming & Sun, Wangmin & Lan, Zhixuan, 2022. "Scenario simulations of China's natural gas consumption under the dual-carbon target," Energy, Elsevier, vol. 252(C).
    12. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
    13. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    14. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    15. Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
    16. Shaikh, Faheemullah & Ji, Qiang & Shaikh, Pervez Hameed & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2017. "Forecasting China’s natural gas demand based on optimised nonlinear grey models," Energy, Elsevier, vol. 140(P1), pages 941-951.
    17. Yongwei, Cheng & Dong, Mu & Huanyu, Ren & Tijun, Fan & Jianbang, Du, 2020. "Using a temporal input-output approach to analyze the ripple effect of China’s energy consumption," Energy, Elsevier, vol. 211(C).
    18. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    19. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
    20. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:251-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.