IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Predictive Analysis of Clean Energy Consumption, Economic Growth and Environmental Regulation in China Using an Optimized Grey Dynamic Model

Listed author(s):
  • Zheng-Xin Wang


Registered author(s):

    To accurately predict the consumption of clean energy in China, a grey dynamic model is constructed by taking economic growth and environmental regulation as exogenous variables. The Nash equilibrium idea-based optimization method is proposed to solve the parameters of the model so as to obtain better modeling effects than that of the traditional model. The empirical results show that: (1) a spontaneous increasing mechanism of the clean energy consumption has not yet formed in China; (2) both GDP and effluent charge play a positive role in accelerating clean energy consumption in China, but effluent charge has a stronger effect than GDP; (3) clean energy consumption in China is expected to stably increase at an annual rate of 5.73 % averagely in 2012–2020. By 2020, clean energy consumption in China is expected to reach 454.55 million tons of standard coal. The study also provides some policy suggestions of promoting clean energy consumption based on the empirical analysis conclusions. Copyright Springer Science+Business Media New York 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & Society for Computational Economics in its journal Computational Economics.

    Volume (Year): 46 (2015)
    Issue (Month): 3 (October)
    Pages: 437-453

    in new window

    Handle: RePEc:kap:compec:v:46:y:2015:i:3:p:437-453
    DOI: 10.1007/s10614-015-9488-5
    Contact details of provider: Web page:

    Web page:

    More information through EDIRC

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    2. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    3. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    4. Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:46:y:2015:i:3:p:437-453. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.