IDEAS home Printed from https://ideas.repec.org/p/zbw/cawmdp/72.html
   My bibliography  Save this paper

The influence of different production functions on modeling resource extraction and economic growth

Author

Listed:
  • Voosholz, Frauke

Abstract

In this paper we discuss the influence of using different production functions on modeling the resource extraction rates and economic growth. The focus is set on the modeling of the production sector, which requires either non-renewable resources, renewable resources or a combination of both resources for production. There are great differences between the possible assumptions when modeling the substitution process between the different input factors. It is shown that the existence of an optimal extraction rate in conjunction with economic growth depends on the specification of the production function even if the same parameterization is used. The target is to provide an overview on the different possibilities of modeling, and to support the decision which kind of production function should be used for modeling different aspects of economic growth.

Suggested Citation

  • Voosholz, Frauke, 2014. "The influence of different production functions on modeling resource extraction and economic growth," CAWM Discussion Papers 72, University of Münster, Center of Applied Economic Research Münster (CAWM).
  • Handle: RePEc:zbw:cawmdp:72
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/102039/1/796629544.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lafforgue, Gilles, 2008. "Stochastic technical change, non-renewable resource and optimal sustainable growth," Resource and Energy Economics, Elsevier, vol. 30(4), pages 540-554, December.
    2. Simone Valente, 2005. "Sustainable Development, Renewable Resources and Technological Progress," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(1), pages 115-125, January.
    3. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2007. "Innovation Markets in the Policy Appraisal of Climate Change Mitigation," IDEI Working Papers 481, Institut d'Économie Industrielle (IDEI), Toulouse.
    4. Juergen Antony, 2007. "Depletion of Non-Renewable Resources and Endogenous Technical Change," Working Papers 027, Bavarian Graduate Program in Economics (BGPE).
    5. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    6. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    7. Cavalcanti, Tiago V. de V. & Mohaddes, Kamiar & Raissi, Mehdi, 2011. "Growth, development and natural resources: New evidence using a heterogeneous panel analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 305-318.
    8. Pittel, Karen & Rübbelke, Dirk T. G., . "Energy supply and the sustainability of endogenous growth," Chapters in Economics,, University of Munich, Department of Economics.
    9. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    10. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    11. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    12. Christian Scholz & Georg Ziemes, 1999. "Exhaustible Resources, Monopolistic Competition, and Endogenous Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(2), pages 169-185, March.
    13. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    14. Chichilnisky, Graciela & Beltratti, Andrea & Heal, Geoffrey, 1998. "Sustainable use of renewable resources, Chapter 2.1," MPRA Paper 8815, University Library of Munich, Germany.
    15. Pittel, Karen & Amigues, Jean-Pierre & Kuhn, Thomas, 2010. "Recycling under a material balance constraint," Resource and Energy Economics, Elsevier, vol. 32(3), pages 379-394, August.
    16. Rainer Klump & Harald Preissler, 2000. "CES Production Functions and Economic Growth," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 41-56, March.
    17. Pezzey, John C V & Withagen, Cees A, 1998. " The Rise, Fall and Sustainability of Capital-Resource Economies," Scandinavian Journal of Economics, Wiley Blackwell, vol. 100(2), pages 513-527, June.
    18. Manh Hung NGUYEN & Phu Nguyen-Van, 2008. "Growth and convergence in a model with renewable and nonrenewable resources," LERNA Working Papers 08.28.272, LERNA, University of Toulouse.
    19. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
    20. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    21. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    22. José Ramón Ruiz Tamarit & Manuel Sánchez Moreno, 2006. "Optimal Regulation And Growth In A Natural-Resource-Based Economy," Working Papers. Serie AD 2006-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    2. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    3. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    4. Nguyen, Manh-Hung & Nguyen-Van, Phu, 2010. "Growth and convergence in a model with renewable and non-renewable resources: existence, transitional dynamics, and empirical evidence," TSE Working Papers 10-210, Toulouse School of Economics (TSE).
    5. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    6. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58.
    7. Hori, Takeo & Yamagami, Hiroaki, 2014. "Intellectual property rights protection in the presence of exhaustible resources," MPRA Paper 58064, University Library of Munich, Germany.
    8. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    9. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources," Energy Policy, Elsevier, vol. 54(C), pages 113-124.
    10. Pittel, Karen & Röpke, Luise, 2014. "The Implications of Energy Input Flexibility for a Resource Dependent Economy," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100321, Verein für Socialpolitik / German Economic Association.
    11. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    12. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    13. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2007. "Innovation Markets in the Policy Appraisal of Climate Change Mitigation," IDEI Working Papers 481, Institut d'Économie Industrielle (IDEI), Toulouse.
    14. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
    15. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    16. Marius Bulearca & Cristian Sima, 2015. "IDENTIFYING THE ENVIRONMENTAL ISSUES IN EXTRACTIVE INDUSTRY (International Conference “EUROPEAN PERSPECTIVE OF LABOR MARKET - INOVATION, EXPERTNESS, PERFORMANCE”)," Institute for Economic Forecasting Conference Proceedings 141102, Institute for Economic Forecasting.
    17. Pittel, Karen & Amigues, Jean-Pierre & Kuhn, Thomas, 2010. "Recycling under a material balance constraint," Resource and Energy Economics, Elsevier, vol. 32(3), pages 379-394, August.
    18. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    19. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic growth and polluting resources: Market equilibrium and optimal policies," Economic Modelling, Elsevier, vol. 30(C), pages 825-834.
    20. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2008. "Decentralized Equilibrium Analysis in a Growth Model with Directed Technical Change and Climate Change Mitigation," IDEI Working Papers 537, Institut d'Économie Industrielle (IDEI), Toulouse.

    More about this item

    Keywords

    economic growth; natural resources; production function;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cawmdp:72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: https://edirc.repec.org/data/camuede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.