IDEAS home Printed from
   My bibliography  Save this article

Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case


  • Li, Der-Chiang
  • Chang, Che-Jung
  • Chen, Chien-Chih
  • Chen, Wen-Chih


The overall electricity consumption, treated as a primary guideline for electricity system planning, is a major measurement to indicate the degree of a nation's development. The electricity consumption forecast is especially important with regard to policy making in developing countries (Asian countries in this work). However, since the economic growth rates in these countries are usually high and unstable, it is difficult to obtain accurate predictions using long-term data, and thus forecasting with limited (short-term) data is more effective and of considerable interest. Grey theory is one approach that can be used to construct a model with limited samples to provide better forecasting advantage for short-term problems. The forecasting performance of AGM(1,1), based on grey theory, has been confirmed using the Asia-Pacific economic cooperation energy database, and the results, compared with those obtained from back propagation neural networks (BPN) and support vector regression (SVR), show that the proposed approach can effectively deal with the problem of forecasting electricity consumption when the sample size is limited.

Suggested Citation

  • Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
  • Handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:767-773 DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hamzacebi, Coskun, 2007. "Forecasting of Turkey's net electricity energy consumption on sectoral bases," Energy Policy, Elsevier, vol. 35(3), pages 2009-2016, March.
    2. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    3. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    4. Costa, Alysson M. & França, Paulo M. & Lyra Filho, Christiano, 2011. "Two-level network design with intermediate facilities: An application to electrical distribution systems," Omega, Elsevier, vol. 39(1), pages 3-13, January.
    5. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.
    6. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    7. Fagerholt, Kjetil & Christiansen, Marielle & Magnus Hvattum, Lars & Johnsen, Trond A.V. & Vabø, Thor J., 2010. "A decision support methodology for strategic planning in maritime transportation," Omega, Elsevier, vol. 38(6), pages 465-474, December.
    8. Yokuma, J. Thomas & Armstrong, J. Scott, 1995. "Beyond accuracy: Comparison of criteria used to select forecasting methods," International Journal of Forecasting, Elsevier, vol. 11(4), pages 591-597, December.
    9. Liu, Zugang & Nagurney, Anna, 2011. "Supply chain outsourcing under exchange rate risk and competition," Omega, Elsevier, vol. 39(5), pages 539-549, October.
    10. Pérez-Gladish, B. & Gonzalez, I. & Bilbao-Terol, A. & Arenas-Parra, M., 2010. "Planning a TV advertising campaign: A crisp multiobjective programming model from fuzzy basic data," Omega, Elsevier, vol. 38(1-2), pages 84-94, February.
    11. F. Chui & A. Elkamel & R. Surit & E. Croiset & P.L. Douglas, 2009. "Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 3(3), pages 277-304.
    12. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    13. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:anm:alpnmr:v:5:y:2017:i:2:p:329-338 is not listed on IDEAS
    2. repec:pal:jorsoc:v:68:y:2017:i:10:d:10.1057_s41274-016-0150-y is not listed on IDEAS
    3. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    4. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    5. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    6. Min-Chun Yu & Chia-Nan Wang & Nguyen-Nhu-Y Ho, 2016. "A Grey Forecasting Approach for the Sustainability Performance of Logistics Companies," Sustainability, MDPI, Open Access Journal, vol. 8(9), pages 1-18, August.
    7. Torrini, Fabiano Castro & Souza, Reinaldo Castro & Cyrino Oliveira, Fernando Luiz & Moreira Pessanha, Jose Francisco, 2016. "Long term electricity consumption forecast in Brazil: A fuzzy logic approach," Socio-Economic Planning Sciences, Elsevier, vol. 54(C), pages 18-27.
    8. repec:gam:jsusta:v:9:y:2017:i:7:p:1228-:d:104627 is not listed on IDEAS
    9. Zhaohua Wang & Chen Wang & Jianhua Yin, 2015. "Strategies for addressing climate change on the industrial level: affecting factors to CO 2 emissions of energy-intensive industries in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 303-317, February.
    10. Lianhui Li & Chunyang Mu & Shaohu Ding & Zheng Wang & Runyang Mo & Yongfeng Song, 2015. "A Robust Weighted Combination Forecasting Method Based on Forecast Model Filtering and Adaptive Variable Weight Determination," Energies, MDPI, Open Access Journal, vol. 9(1), pages 1-22, December.
    11. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    12. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    13. repec:gam:jeners:v:9:y:2015:i:1:p:20:d:61556 is not listed on IDEAS
    14. repec:eee:apmaco:v:252:y:2015:i:c:p:287-293 is not listed on IDEAS
    15. Zheng-Xin Wang, 2013. "A genetic algorithm-based grey method for forecasting food demand after snow disasters: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 675-686, September.
    16. Ma, Weimin & Zhu, Xiaoxi & Wang, Miaomiao, 2013. "Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm," Resources Policy, Elsevier, vol. 38(4), pages 613-620.
    17. repec:gam:jsusta:v:9:y:2017:i:7:p:1166-:d:103459 is not listed on IDEAS
    18. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:767-773. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.