IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v39y2011i1p3-13.html
   My bibliography  Save this article

Two-level network design with intermediate facilities: An application to electrical distribution systems

Author

Listed:
  • Costa, Alysson M.
  • França, Paulo M.
  • Lyra Filho, Christiano

Abstract

We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times.

Suggested Citation

  • Costa, Alysson M. & França, Paulo M. & Lyra Filho, Christiano, 2011. "Two-level network design with intermediate facilities: An application to electrical distribution systems," Omega, Elsevier, vol. 39(1), pages 3-13, January.
  • Handle: RePEc:eee:jomega:v:39:y:2011:i:1:p:3-13
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(10)00006-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anantaram Balakrishnan & Thomas L. Magnanti & Prakash Mirchandani, 1994. "Modeling and Heuristic Worst-Case Performance Analysis of the Two-Level Network Design Problem," Management Science, INFORMS, vol. 40(7), pages 846-867, July.
    2. Raymond A. Patterson & Erik Rolland, 2002. "Hybrid Fiber Coaxial Network Design," Operations Research, INFORMS, vol. 50(3), pages 538-551, June.
    3. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    4. Gouveia, Luis & Janssen, Eric, 1998. "Designing reliable tree networks with two cable technologies," European Journal of Operational Research, Elsevier, vol. 105(3), pages 552-568, March.
    5. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    6. Gupta, Rakesh & Pirkul, Hasan, 2000. "Hybrid fiber co-axial CATV network design with variable capacity optical network units," European Journal of Operational Research, Elsevier, vol. 123(1), pages 73-85, May.
    7. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    8. Anne de Jongh & Michel Gendreau & Martine Labbé, 1999. "Finding Disjoint Routes in Telecommunications Networks with Two Technologies," Operations Research, INFORMS, vol. 47(1), pages 81-92, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chardy, M. & Costa, M.-C. & Faye, A. & Trampont, M., 2012. "Optimizing splitter and fiber location in a multilevel optical FTTH network," European Journal of Operational Research, Elsevier, vol. 222(3), pages 430-440.
    2. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    3. Georgiadis, Michael C. & Tsiakis, Panagiotis & Longinidis, Pantelis & Sofioglou, Maria K., 2011. "Optimal design of supply chain networks under uncertain transient demand variations," Omega, Elsevier, vol. 39(3), pages 254-272, June.
    4. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    5. Salman Khodayifar & Mohammad A. Raayatpanah & Abbas Rabiee & Hamed Rahimian & Panos M. Pardalos, 2018. "Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 283-310, October.
    6. Vizcaino González, José Federico & Lyra, Christiano & Usberti, Fábio Luiz, 2012. "A pseudo-polynomial algorithm for optimal capacitor placement on electric power distribution networks," European Journal of Operational Research, Elsevier, vol. 222(1), pages 149-156.
    7. Qasem Abu Al-Haija, 2021. "A Stochastic Estimation Framework for Yearly Evolution of Worldwide Electricity Consumption," Forecasting, MDPI, vol. 3(2), pages 1-11, April.
    8. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    9. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    10. Park, Chanwoo & Lee, Youngho & Kim, Youngjin & Park, Gigyoung, 2014. "An access network design problem with end-to-end QoS constraints," Omega, Elsevier, vol. 48(C), pages 36-48.
    11. Li, Xiangyong & Aneja, Y.P. & Huo, Jiazhen, 2012. "A robust branch-and-cut approach for the minimum-energy symmetric network connectivity problem," Omega, Elsevier, vol. 40(2), pages 210-217, April.
    12. Blanco, Víctor & Puerto, Justo & Ramos, Ana B., 2011. "Expanding the Spanish high-speed railway network," Omega, Elsevier, vol. 39(2), pages 138-150, April.
    13. Yazar, Başak & Arslan, Okan & Karaşan, Oya Ekin & Kara, Bahar Y., 2016. "Fiber optical network design problems: A case for Turkey," Omega, Elsevier, vol. 63(C), pages 23-40.
    14. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    15. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    16. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    17. Eduardo Álvarez-Miranda & Ivana Ljubić & S. Raghavan & Paolo Toth, 2015. "The Recoverable Robust Two-Level Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 1-19, February.
    18. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    19. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    20. Deane, Jason & Agarwal, Anurag, 2012. "Scheduling online advertisements to maximize revenue under variable display frequency," Omega, Elsevier, vol. 40(5), pages 562-570.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chardy, M. & Costa, M.-C. & Faye, A. & Trampont, M., 2012. "Optimizing splitter and fiber location in a multilevel optical FTTH network," European Journal of Operational Research, Elsevier, vol. 222(3), pages 430-440.
    2. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    3. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1833-1844, April.
    4. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    5. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    6. Deepak Lamba & Devendra K. Yadav & Akhilesh Barve & Ganapati Panda, 2020. "Prioritizing barriers in reverse logistics of E-commerce supply chain using fuzzy-analytic hierarchy process," Electronic Commerce Research, Springer, vol. 20(2), pages 381-403, June.
    7. Konstantaras, Ioannis & Skouri, Konstantina & Benkherouf, Lakdere, 2021. "Optimizing inventory decisions for a closed–loop supply chain model under a carbon tax regulatory mechanism," International Journal of Production Economics, Elsevier, vol. 239(C).
    8. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    9. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    10. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.
    11. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    12. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    13. Tahirov, Nail & Hasanov, Parviz & Jaber, Mohamad Y., 2016. "Optimization of closed-loop supply chain of multi-items with returned subassemblies," International Journal of Production Economics, Elsevier, vol. 174(C), pages 1-10.
    14. Kottala Sri Yogi, 2015. "Performance evaluation of reverse logistics: A case of LPG agency," Cogent Business & Management, Taylor & Francis Journals, vol. 2(1), pages 1063229-106, December.
    15. Martí, Joana M. Comas & Tancrez, Jean-Sébastien & Seifert, Ralf W., 2015. "Carbon footprint and responsiveness trade-offs in supply chain network design," International Journal of Production Economics, Elsevier, vol. 166(C), pages 129-142.
    16. Chan, Chi Kin & Man, Nora & Fang, Fei & Campbell, J.F., 2020. "Supply chain coordination with reverse logistics: A vendor/recycler-buyer synchronized cycles model," Omega, Elsevier, vol. 95(C).
    17. Pradip K. Bhaumik, 2015. "Supply Chain Network Design Based on Integration of Forward and Reverse Logistics," Global Business Review, International Management Institute, vol. 16(4), pages 680-699, August.
    18. Chandra Prakash Garg, 2020. "A robust hybrid decision model to evaluate critical factors of reverse logistics implementation using Grey-DEMATEL framework," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 837-873, September.
    19. Gollowitzer, Stefan & Gouveia, Luis & Ljubić, Ivana, 2013. "Enhanced formulations and branch-and-cut for the two level network design problem with transition facilities," European Journal of Operational Research, Elsevier, vol. 225(2), pages 211-222.
    20. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:39:y:2011:i:1:p:3-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.