Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.07.043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
- Amarawickrama, Himanshu A. & Hunt, Lester C., 2008.
"Electricity demand for Sri Lanka: A time series analysis,"
Energy, Elsevier, vol. 33(5), pages 724-739.
- Himanshu A. Amarawickrama & Lester C Hunt, 2007. "Electricity Demand for Sri Lanka: A Time Series Analysis," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 118, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Nava, M. & Gasca, J. & González, U., 2006. "The energy demand and the impact by fossil fuels use in the Mexico City Metropolitan Area, from 1988 to 2000," Energy, Elsevier, vol. 31(15), pages 3381-3390.
- Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
- Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Hessari, F. A., 2005. "Sectoral energy consumption in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 203-214, April.
- Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
- Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
- Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
- Duran Toksari, M., 2007. "Ant colony optimization approach to estimate energy demand of Turkey," Energy Policy, Elsevier, vol. 35(8), pages 3984-3990, August.
- Canyurt, Olcay Ersel & Ozturk, Harun Kemal, 2008. "Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2562-2569, July.
- Askari, Hossein & Krichene, Noureddine, 2010. "An oil demand and supply model incorporating monetary policy," Energy, Elsevier, vol. 35(5), pages 2013-2021.
- Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
- Azadeh, A. & Ghaderi, S.F. & Sohrabkhani, S., 2008. "A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran," Energy Policy, Elsevier, vol. 36(7), pages 2637-2644, July.
- Houri Jafari, H. & Baratimalayeri, A., 2008. "The crisis of gasoline consumption in the Iran's transportation sector," Energy Policy, Elsevier, vol. 36(7), pages 2536-2543, July.
- Karbassi, A.R. & Abduli, M.A. & Mahin Abdollahzadeh, E., 2007. "Sustainability of energy production and use in Iran," Energy Policy, Elsevier, vol. 35(10), pages 5171-5180, October.
- Tang, Xu & Zhang, Baosheng & Höök, Mikael & Feng, Lianyong, 2010. "Forecast of oil reserves and production in Daqing oilfield of China," Energy, Elsevier, vol. 35(7), pages 3097-3102.
- Jovanovic, Marina & Afgan, Naim & Bakic, Vukman, 2010. "An analytical method for the measurement of energy system sustainability in urban areas," Energy, Elsevier, vol. 35(9), pages 3909-3920.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Behrang, M.A. & Assareh, E. & Ghalambaz, M. & Assari, M.R. & Noghrehabadi, A.R., 2011. "Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)," Energy, Elsevier, vol. 36(9), pages 5649-5654.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
- Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
- Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
- Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
- Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Kialashaki, Arash & Reisel, John R., 2014. "Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States," Energy, Elsevier, vol. 76(C), pages 749-760.
- Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
- Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
- Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
- Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
More about this item
Keywords
GA (genetic algorithm); PSO (particle swarm optimization); Oil; Projection; Demand;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5223-5229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.