IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2306-d354533.html
   My bibliography  Save this article

Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy

Author

Listed:
  • Christos Vlachokostas

    (Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, 54124 Thessaloniki, Greece)

  • Charisios Achillas

    (Department of Supply Chain Management, International Hellenic University, Kanelopoulou 2, 60100 Katerini, Greece)

  • Ioannis Agnantiaris

    (Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, 54124 Thessaloniki, Greece)

  • Alexandra V. Michailidou

    (Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, 54124 Thessaloniki, Greece)

  • Christos Pallas

    (Municipality of Serres, Merarchias Avenue 1, 62122 Serres, Greece)

  • Eleni Feleki

    (Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, 54124 Thessaloniki, Greece)

  • Nicolas Moussiopoulos

    (Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, 54124 Thessaloniki, Greece)

Abstract

Lately, the model of circular economy has gained worldwide interest. Within its concept, waste is viewed as a beneficial resource that needs to be re-introduced in the supply chains, which also requires the use of raw materials, energy, and water to be minimized. Undeniably, a strong link exists between the bioeconomy, circular economy, bioproducts, and bioenergy. In this light, in order to promote a circular economy, a range of alternative options and technologies for biowaste exploitation are currently available. In this paper, we propose a generic methodological scheme for the development of small, medium, or large-scale units of alternative biowaste treatment, with an emphasis on the production of bioenergy and other bioproducts. With the use of multi-criteria decision analysis, the model simultaneously considers environmental, economic, and social criteria to support robust decision-making. In order to validate the methodology, the latter was demonstrated in a real-world case study for the development of a facility in the region of Serres, Greece. Based on the proposed methodological scheme, the optimal location of the facility was selected, based on its excellent assessment in criteria related to environmental performance, financial considerations, and local acceptance. Moreover, anaerobic digestion of agricultural residues, together with farming and livestock wastes, was recommended in order to produce bioenergy and bioproducts.

Suggested Citation

  • Christos Vlachokostas & Charisios Achillas & Ioannis Agnantiaris & Alexandra V. Michailidou & Christos Pallas & Eleni Feleki & Nicolas Moussiopoulos, 2020. "Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy," Energies, MDPI, vol. 13(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2306-:d:354533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    2. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    4. Gomes, Carlos F. Simões & Nunes, Kátia R.A. & Helena Xavier, Lucia & Cardoso, Rosangela & Valle, Rogerio, 2008. "Multicriteria decision making applied to waste recycling in Brazil," Omega, Elsevier, vol. 36(3), pages 395-404, June.
    5. Rogers, Martin & Bruen, Michael, 1998. "Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE," European Journal of Operational Research, Elsevier, vol. 107(3), pages 542-551, June.
    6. Al-Shemmeri, Tarik & Al-Kloub, Bashar & Pearman, Alan, 1997. "Model choice in multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 97(3), pages 550-560, March.
    7. Terry Ross, G. & Soland, Richard M., 1980. "A multicriteria approach to the location of public facilities," European Journal of Operational Research, Elsevier, vol. 4(5), pages 307-321, May.
    8. Soukopová, Jana & Vaceková, Gabriela & Klimovský, Daniel, 2017. "Local waste management in the Czech Republic: Limits and merits of public-private partnership and contracting out," Utilities Policy, Elsevier, vol. 48(C), pages 201-209.
    9. Michailidou, Alexandra V. & Vlachokostas, Christos & Moussiopoulos, Νicolas, 2016. "Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas," Tourism Management, Elsevier, vol. 55(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Feroz & Ali, Yousaf, 2022. "Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country," Ecological Economics, Elsevier, vol. 196(C).
    2. Helen Onyeaka & Phemelo Tamasiga & Uju Mary Nwauzoma & Taghi Miri & Uche Chioma Juliet & Ogueri Nwaiwu & Adenike A. Akinsemolu, 2023. "Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    3. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    4. Franz Grossauer & Gernot Stoeglehner, 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda," Land, MDPI, vol. 12(1), pages 1-22, January.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    7. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    8. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    9. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. João Reis & Paula Santo & Nuno Melão, 2020. "Artificial Intelligence Research and Its Contributions to the European Union’s Political Governance: Comparative Study between Member States," Social Sciences, MDPI, vol. 9(11), pages 1-17, November.
    11. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    12. Charisios Achillas & Dionysis Bochtis, 2021. "Supply Chain Management for Bioenergy and Bioresources: Bridging the Gap between Theory and Practice," Energies, MDPI, vol. 14(19), pages 1-4, September.
    13. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    14. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra & Abhijit Majumdar & Yigit Kazancoglu, 2022. "An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling," Operations Management Research, Springer, vol. 15(3), pages 609-626, December.
    15. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.
    16. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paraskevi Ovezikoglou & Dimitrios Aidonis & Charisios Achillas & Christos Vlachokostas & Dionysis Bochtis, 2020. "Sustainability Assessment of Investments Based on a Multiple Criteria Methodological Framework," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    2. Michailidou, Alexandra V. & Vlachokostas, Christos & Moussiopoulos, Νicolas, 2016. "Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas," Tourism Management, Elsevier, vol. 55(C), pages 1-12.
    3. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    4. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    5. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    7. Lerche, Nils & Wilkens, Ines & Schmehl, Meike & Eigner-Thiel, Swantje & Geldermann, Jutta, 2019. "Using methods of Multi-Criteria Decision Making to provide decision support concerning local bioenergy projects," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    8. Gao, Ruxing & Nam, Hyo On & Ko, Won Il & Jang, Hong, 2018. "Integrated system evaluation of nuclear fuel cycle options in China combined with an analytical MCDM framework," Energy Policy, Elsevier, vol. 114(C), pages 221-233.
    9. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Melin, S., 2010. "A multicriteria approach to evaluate district heating system options," Applied Energy, Elsevier, vol. 87(4), pages 1134-1140, April.
    10. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    11. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    12. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    15. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    16. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    17. Dorota Górecka, 2012. "Applying Multi-Criteria Decision Aiding techniques in the process of project management within the wedding planning business," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(4), pages 41-67.
    18. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    20. Schliephack, Johanna & Dickinson, Janet E., 2017. "Tourists’ representations of coastal managed realignment as a climate change adaptation strategy," Tourism Management, Elsevier, vol. 59(C), pages 182-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2306-:d:354533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.