IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6545-d460633.html
   My bibliography  Save this article

The Linkages between Crude Oil and Food Prices

Author

Listed:
  • Monika Roman

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland)

  • Aleksandra Górecka

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland)

  • Joanna Domagała

    (Institute of Economics and Finance, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland)

Abstract

This paper aims to indicate the linkages between crude oil prices and selected food price indexes (dairy, meat, oils, cereals, and sugar) and provide an empirical specification of the direction of the impact. This paper reviews the fuel–food price linkage models with consideration to the time series literature. This study adopts several methods, namely the Augmented Dickey–Fuller test, Granger causality test, the cointegration test, the vector autoregression model, and the vector error correction model, for studying the price transmission among the crude oil and five selected food groups. The data series covers the period between January 1990 and September 2020. The empirical results from the paper indicate that there are long-term relationships between crude oil and meat prices. The linkage of crude oil prices occurred with food, cereal, and oil prices in the short term. Furthermore, the linkages between the analyzed variables increased in 2006–2020.

Suggested Citation

  • Monika Roman & Aleksandra Górecka & Joanna Domagała, 2020. "The Linkages between Crude Oil and Food Prices," Energies, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6545-:d:460633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Semei Coronado & Omar Rojas & Rafael Romero-Meza & Apostolos Serletis & Leslie Verteramo Chiu, 2018. "Crude Oil and Biofuel Agricultural Commodity Prices," Dynamic Modeling and Econometrics in Economics and Finance, in: Fredj Jawadi (ed.), Uncertainty, Expectations and Asset Price Dynamics, pages 107-123, Springer.
    2. Christopher L. Gilbert, 2010. "How to Understand High Food Prices," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 398-425, June.
    3. Alanoud Al-Maadid & Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2017. "Spillovers between food and energy prices and structural breaks," International Economics, CEPII research center, issue 150, pages 1-18.
    4. Ding, Shusheng & Zhang, Yongmin, 2020. "Cross market predictions for commodity prices," Economic Modelling, Elsevier, vol. 91(C), pages 455-462.
    5. Joseph Mawejje, 2016. "Food prices, energy and climate shocks in Uganda," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-18, December.
    6. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Anthony N. Rezitis, 2015. "The relationship between agricultural commodity prices, crude oil prices and US dollar exchange rates: a panel VAR approach and causality analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 403-434, May.
    9. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    10. Sarwar, Suleman & Tiwari, Aviral Kumar & Tingqiu, Cao, 2020. "Analyzing volatility spillovers between oil market and Asian stock markets," Resources Policy, Elsevier, vol. 66(C).
    11. Dennis Bergmann & Declan O’Connor & Andreas Thümmel, 2016. "An analysis of price and volatility transmission in butter, palm oil and crude oil markets," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-23, December.
    12. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    13. Benedictow, Andreas & Fjærtoft, Daniel & Løfsnæs, Ole, 2013. "Oil dependency of the Russian economy: An econometric analysis," Economic Modelling, Elsevier, vol. 32(C), pages 400-428.
    14. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    15. Rosa, Franco & Vasciaveo, Michela, 2012. "Agri-Commodity Price Dynamics: The Relationship Between Oil and Agricultural Market," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126738, International Association of Agricultural Economists.
    16. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    17. Pasrun Adam & Rosnawintang Rosnawintang & La Ode Saidi & La Tondi & La Ode Arsad Sani, 2018. "The Causal Relationship between Crude Oil Price, Exchange Rate and Rice Price," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 90-94.
    18. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    19. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    20. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    21. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    22. Klaus Neusser, 2016. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-32862-1, August.
    23. Kelvin Balcombe & George Rapsomanikis, 2008. "Bayesian Estimation and Selection of Nonlinear Vector Error Correction Models: The Case of the Sugar-Ethanol-Oil Nexus in Brazil," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 658-668.
    24. Joseph Mawejje, 2016. "Food prices, energy and climate shocks in Uganda," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-18, December.
    25. Sa Xu & Ziqing Du & Hai Zhang, 2020. "Can Crude Oil Serve as a Hedging Asset for Underlying Securities?—Research on the Heterogenous Correlation between Crude Oil and Stock Index," Energies, MDPI, vol. 13(12), pages 1-19, June.
    26. Hau, Liya & Zhu, Huiming & Huang, Rui & Ma, Xiang, 2020. "Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression," Energy, Elsevier, vol. 213(C).
    27. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    28. Fowowe, Babajide, 2016. "Do oil prices drive agricultural commodity prices? Evidence from South Africa," Energy, Elsevier, vol. 104(C), pages 149-157.
    29. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    30. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    31. Zhang, Chuanguo & Qu, Xuqin, 2015. "The effect of global oil price shocks on China's agricultural commodities," Energy Economics, Elsevier, vol. 51(C), pages 354-364.
    32. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    33. Anthony N. Rezitis, 2015. "Empirical Analysis of Agricultural Commodity Prices, Crude Oil Prices and US Dollar Exchange Rates using Panel Data Econometric Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 851-868.
    34. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Yoshino, Naoyuki, 2019. "Energy and Food Security: Linkages through Price Volatility," Energy Policy, Elsevier, vol. 128(C), pages 796-806.
    35. Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
    36. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    37. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    38. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    39. Chang, Ting-Huan & Su, Hsin-Mei, 2010. "The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods," Energy, Elsevier, vol. 35(7), pages 2807-2813.
    40. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    41. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Jun & Khalid, Samia & Mahmood, Hamid & Zakaria, Muhammad, 2021. "Symmetric and asymmetric impact of economic policy uncertainty on food prices in China: A new evidence," Resources Policy, Elsevier, vol. 74(C).
    2. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    3. Waseem Khan & Vishal Sharma & Saghir Ahmad Ansari, 2022. "Modeling the dynamics of oil and agricultural commodity price nexus in linear and nonlinear frameworks: A case of emerging economy," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1733-1784, August.
    4. Gbadebo A. Oladosu & Keith L. Kline & Johannes W. A. Langeveld, 2021. "Structural Break and Causal Analyses of U.S. Corn Use for Ethanol and Other Corn Market Variables," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    5. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    6. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Shahriyar Mukhtarov & Sugra Humbatova & Mubariz Mammadli & Natig Gadim‒Oglu Hajiyev, 2021. "The Impact of Oil Price Shocks on National Income: Evidence from Azerbaijan," Energies, MDPI, vol. 14(6), pages 1-11, March.
    8. Byrne Kaulu, 2021. "Effects of crude oil prices on copper and maize prices," Future Business Journal, Springer, vol. 7(1), pages 1-15, December.
    9. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    10. Miroslava Ivanova & Lilko Dospatliev, 2023. "Effects of Diesel Price on Changes in Agricultural Commodity Prices in Bulgaria," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    11. Dervis Kirikkaleli & Ibrahim Darbaz, 2021. "The Causal Linkage between Energy Price and Food Price," Energies, MDPI, vol. 14(14), pages 1-13, July.
    12. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    13. Shokoohi, Zeinab & Saghaian, Sayed, 2022. "Nexus of energy and food nutrition prices in oil importing and exporting countries: A panel VAR model," Energy, Elsevier, vol. 255(C).
    14. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    15. Yu-Wei Chen & Chui-Yu Chiu & Mu-Chun Hsiao, 2021. "An Auxiliary Index for Reducing Brent Crude Investment Risk—Evaluating the Price Relationships between Brent Crude and Commodities," Sustainability, MDPI, vol. 13(9), pages 1-45, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    2. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Yoshino, Naoyuki, 2019. "Energy and Food Security: Linkages through Price Volatility," Energy Policy, Elsevier, vol. 128(C), pages 796-806.
    3. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    4. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    6. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Miroslava Ivanova & Lilko Dospatliev, 2023. "Effects of Diesel Price on Changes in Agricultural Commodity Prices in Bulgaria," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    8. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    9. Waseem Khan & Vishal Sharma & Saghir Ahmad Ansari, 2022. "Modeling the dynamics of oil and agricultural commodity price nexus in linear and nonlinear frameworks: A case of emerging economy," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1733-1784, August.
    10. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    11. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    12. Sergio Adriani David & Claudio M. C. Inácio & José A. Tenreiro Machado, 2019. "Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    13. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    14. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Yoshino, Naoyuki, 2018. "Volatility Linkages between Energy and Food Prices: Case of Selected Asian Countries," ADBI Working Papers 829, Asian Development Bank Institute.
    15. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    16. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    17. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    18. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    19. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    20. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6545-:d:460633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.