IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5478-d431654.html
   My bibliography  Save this article

Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries

Author

Listed:
  • Piotr Kułyk

    (Faculty of Economics and Management, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland)

  • Łukasz Augustowski

    (Faculty of Economics and Management, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland)

Abstract

The article examines the relationship between CO 2 equivalent emissions and agricultural production, taking into account additional economic and social variables that correct the considered relationship for the six Central and Eastern European countries over the period 1992–2017. The aim of the article was to confirm or negate the occurrence of the environmental Kuznets curve (EKC) in the countries of Central and Eastern Europe. Countries that experienced a political transformation and were subsequently admitted to the European Union (EU) undergoing a preparatory period were included. The topic is timely as all EU countries are required to monitor their emissions under the EU Climate Monitoring Mechanism. The discussed problem is significant due to the changes taking place in the common agricultural policy, the choice of actions to be taken by individual countries in their national policies, and the choice of instruments to support the transformation of agriculture. Agriculture has a particularly large impact on emissions, especially N 2 O and CH 4 . This paper uses GLS (Generalized least squares) panel regression with random effects taking into consideration individual effects for countries. The conducted empirical research confirmed the hypothesis regarding the occurrence of the Kuznets curve in relation to agricultural production. In this situation, it is required to increase the activities of maintaining production growth, with the support of technological changes that significantly increase pro-environmental conditions, because, in the current circumstances, this growth takes place with an increase in CO 2 gas emissions, thus leading to negative external effects.

Suggested Citation

  • Piotr Kułyk & Łukasz Augustowski, 2020. "Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries," Energies, MDPI, vol. 13(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5478-:d:431654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    2. Jubenot Marie-Noelle, 2013. "Applying The Kuznets Curve In Case Of Romania," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(2), pages 106-115, December.
    3. Nalley, Lawton Lanier & Popp, Michael P. & Fortin, Corey, 2011. "The Impact of Reducing Greenhouse Gas Emissions in Crop Agriculture: A Spatial- and Production-Level Analysis," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(1), pages 1-18, April.
    4. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    5. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    6. Tijjani Musa Adamu & Ihtisham ul Haq & Muhammad Shafiq, 2019. "Analyzing the Impact of Energy, Export Variety, and FDI on Environmental Degradation in the Context of Environmental Kuznets Curve Hypothesis: A Case Study of India," Energies, MDPI, vol. 12(6), pages 1-18, March.
    7. Ulrich Koester & Jens-Peter Loy, 2016. "EU Agricultural Policy Reform: Evaluating the EU’s New Methodology for Direct Payments," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 51(5), pages 278-285, September.
    8. Alexander Gocht & Pavel Ciaian & Maria Bielza & Jean-Michel Terres & Norbert Röder & Mihaly Himics & Guna Salputra, 2017. "EU-wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-type Detail," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 651-681, September.
    9. Giedrė Lapinskienė & Kęstutis Peleckis & Zlatko Nedelko, 2017. "Testing environmental Kuznets curve hypothesis: the role of enterprise’s sustainability and other factors on GHG in European countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(1), pages 54-67, January.
    10. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    11. Huaping Sun & Samuel Attuquaye Clottey & Yong Geng & Kai Fang & Joshua Clifford Kofi Amissah, 2019. "Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    12. Jeremi s M t Balogh & Attila J mbor, 2017. "Determinants of CO2 Emission: A Global Evidence," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 217-226.
    13. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    14. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    15. Wiréhn, Lotten, 2018. "Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production," Land Use Policy, Elsevier, vol. 77(C), pages 63-74.
    16. Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Maleeha Mohammed Zaaf Al-Qahtani & Zafrul Allam & Nawaz Ahmad & Maham Furqan, 2019. "Agriculture development and CO2 emissions nexus in Saudi Arabia," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    17. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    18. Koester, Ulrich & Loy, Jens-Peter, 2016. "EU Agricultural Policy Reform: Evaluating the EU's New Methodology for Direct Payments," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(5), pages 278-285.
    19. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    20. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    21. Hanqin Tian & Chaoqun Lu & Philippe Ciais & Anna M. Michalak & Josep G. Canadell & Eri Saikawa & Deborah N. Huntzinger & Kevin R. Gurney & Stephen Sitch & Bowen Zhang & Jia Yang & Philippe Bousquet & , 2016. "The terrestrial biosphere as a net source of greenhouse gases to the atmosphere," Nature, Nature, vol. 531(7593), pages 225-228, March.
    22. Raul Arango Miranda & Robert Hausler & Rabindranarth Romero Lopez & Mathias Glaus & Jose Ramon Pasillas-Diaz, 2020. "Testing the Environmental Kuznets Curve Hypothesis in North America’s Free Trade Agreement (NAFTA) Countries," Energies, MDPI, vol. 13(12), pages 1-13, June.
    23. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    24. Nalley, Lanier & Popp, Mike & Fortin, Corey, 2011. "The Impact of Reducing Greenhouse Gas Emissions in Crop Agriculture: A Spatial-and Production-Level Analysis," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(1), pages 63-80, April.
    25. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    26. Vanni, Francesco & Cardillo, Concetta, 2013. "The effects of CAP greening on Italian agriculture," Politica Agricola Internazionale - International Agricultural Policy, Edizioni L'Informatore Agrario, vol. 2013(3), September.
    27. Bruno Henry de Frahan & J r mie Dong & Rembert De Blander, 2017. "Farm Household Incomes in OECD Member Countries over the Last 30 Years of Public Support," LIS Working papers 700, LIS Cross-National Data Center in Luxembourg.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Dzikuć & Rafał Miśko & Szymon Szufa, 2021. "Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland," Energies, MDPI, vol. 14(11), pages 1-12, June.
    2. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    3. Chopra, Ritika & Magazzino, Cosimo & Shah, Muhammad Ibrahim & Sharma, Gagan Deep & Rao, Amar & Shahzad, Umer, 2022. "The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity?," Resources Policy, Elsevier, vol. 76(C).
    4. Devesh Singh & Sunil Kumar Dhiman, 2023. "The linkage between carbon emissions, foreign direct investment, economic growth, and gross value added," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 156-176, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    2. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    3. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    4. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    5. Mahalik, Mantu Kumar & Villanthenkodath, Muhammed Ashiq & Mallick, Hrushikesh & Gupta, Monika, 2021. "Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India," Energy Policy, Elsevier, vol. 149(C).
    6. Frodyma, Katarzyna & Papież, Monika & Śmiech, Sławomir, 2022. "Revisiting the Environmental Kuznets Curve in the European Union countries," Energy, Elsevier, vol. 241(C).
    7. Alexandre Sauquet, 2021. "Ex-post analysis of the crop diversification policy ofthe CAP Greening in France," Working Papers hal-03455548, HAL.
    8. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    9. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    10. Shahbaz, Muhammad & Sbia, Rashid & Hamdi, Helmi, 2013. "The Environmental cost of Skiing in the Desert? Evidence from Cointegration with unknown Structural breaks in UAE," MPRA Paper 48007, University Library of Munich, Germany, revised 03 Jul 2013.
    11. Bingjie Xu & Ruoyu Zhong & Yifeng Liu, 2019. "Comparison of CO 2 emissions reduction efficiency of household fuel consumption in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    12. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    13. Saida Daly & Mohamed Abdouli, 2023. "The Nexus between Environmental Quality, Economic Growth, and Trade Openness in Saudi Arabia (1990-2017)," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 579-598, July.
    14. Ranganathan, Shyam & Bali Swain, Ranjula, 2014. "Analysing Mechanisms for Meeting Global Emissions Target - A Dynamical Systems Approach," Working Paper Series 2014:10, Uppsala University, Department of Economics.
    15. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    16. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    17. Cristian Barra & Roberto Zotti, 2018. "Investigating the non-linearity between national income and environmental pollution: international evidence of Kuznets curve," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 179-210, January.
    18. He, Jie & Wang, Hua, 2012. "Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data," Ecological Economics, Elsevier, vol. 76(C), pages 49-59.
    19. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    20. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5478-:d:431654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.