IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5360-d428052.html
   My bibliography  Save this article

How Population Age Distribution Affects Future Electricity Demand in Korea: Applying Population Polynomial Function

Author

Listed:
  • Ha-Hyun Jo

    (Department of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Minwoo Jang

    (Korea Power Exchange, 625 Bitgaram-ro, Naju City 58322, Korea)

  • Jaehyeok Kim

    (Yonsei Economic Research Institute, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

Abstract

Mounting evidence shows that economic and climate variables such as income, energy price, and temperature impact energy demand. We examined another variable, population age distribution, which has rarely been considered, that could affect energy demand. We employ population polynomials to account for the impact of population age distribution on residential electricity consumption in Korea. Using panel data from 1990 to 2016, we verify that populations aged 20~44, and those over 60, raise residential electricity consumption. We additionally evaluate the impact of population age distribution in forecasting future electricity consumption and conclude that age distribution effects dominate total population growth effects.

Suggested Citation

  • Ha-Hyun Jo & Minwoo Jang & Jaehyeok Kim, 2020. "How Population Age Distribution Affects Future Electricity Demand in Korea: Applying Population Polynomial Function," Energies, MDPI, Open Access Journal, vol. 13(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5360-:d:428052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kronenberg, Tobias, 2009. "The impact of demographic change on energy use and greenhouse gas emissions in Germany," Ecological Economics, Elsevier, vol. 68(10), pages 2637-2645, August.
    2. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    3. Bardazzi, Rossella & Pazienza, Maria Grazia, 2017. "Switch off the light, please! Energy use, aging population and consumption habits," Energy Economics, Elsevier, vol. 65(C), pages 161-171.
    4. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    5. Higgins, Matthew, 1998. "Demography, National Savings, and International Capital Flows," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(2), pages 343-369, May.
    6. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    7. Carsten Schroder & Katrin Rehdanz & Daiju Narita & Toshihiro Okubo, 2013. "Household formation and residential energy demand: Evidence from Japan," Keio/Kyoto Joint Global COE Discussion Paper Series 2012-047, Keio/Kyoto Joint Global COE Program.
    8. Yang, Shu & Zhang, Yanbing & Zhao, Dingtao, 2016. "Who exhibits more energy-saving behavior in direct and indirect ways in china? The role of psychological factors and socio-demographics," Energy Policy, Elsevier, vol. 93(C), pages 196-205.
    9. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    10. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2016. "Disentangling temporal patterns in elasticities: A functional coefficient panel analysis of electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 232-243.
    11. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    12. Jaehyeok Kim & Minwoo Jang & Donghyun Shin, 2019. "Examining the Role of Population Age Structure upon Residential Electricity Demand: A Case from Korea," Sustainability, MDPI, Open Access Journal, vol. 11(14), pages 1-19, July.
    13. Wallis, Hannah & Nachreiner, Malte & Matthies, Ellen, 2016. "Adolescents and electricity consumption; Investigating sociodemographic, economic, and behavioural influences on electricity consumption in households," Energy Policy, Elsevier, vol. 94(C), pages 224-234.
    14. Brantley Liddle, 2011. "Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(30), pages 749-770.
    15. Garau, Giorgio & Lecca, Patrizio & Mandras, Giovanni, 2013. "The impact of population ageing on energy use: Evidence from Italy," Economic Modelling, Elsevier, vol. 35(C), pages 970-980.
    16. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    17. Hamza, Neveen & Gilroy, Rose, 2011. "The challenge to UK energy policy: An ageing population perspective on energy saving measures and consumption," Energy Policy, Elsevier, vol. 39(2), pages 782-789, February.
    18. Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
    19. Roberts, Simon, 2008. "Demographics, energy and our homes," Energy Policy, Elsevier, vol. 36(12), pages 4630-4632, December.
    20. Hori, Shiro & Kondo, Kayoko & Nogata, Daisuke & Ben, Han, 2013. "The determinants of household energy-saving behavior: Survey and comparison in five major Asian cities," Energy Policy, Elsevier, vol. 52(C), pages 354-362.
    21. Yamasaki, Eiji & Tominaga, Norio, 1997. "Evolution of an aging society and effect on residential energy demand," Energy Policy, Elsevier, vol. 25(11), pages 903-912, September.
    22. Mikael Juselius & Elod Takats, 2015. "Can demography affect inflation and monetary policy?," BIS Working Papers 485, Bank for International Settlements.
    23. Arisoy, Ibrahim & Ozturk, Ilhan, 2014. "Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach," Energy, Elsevier, vol. 66(C), pages 959-964.
    24. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqing Sheng & Jinpeng Liu & Delin Wei & Xiaohua Song, 2021. "Heterogeneous Study of Multiple Disturbance Factors Outside Residential Electricity Consumption: A Case Study of Beijing," Sustainability, MDPI, Open Access Journal, vol. 13(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyeok Kim & Minwoo Jang & Donghyun Shin, 2019. "Examining the Role of Population Age Structure upon Residential Electricity Demand: A Case from Korea," Sustainability, MDPI, Open Access Journal, vol. 11(14), pages 1-19, July.
    2. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    3. Ryu, Jun-Yeol & Kim, Dae-Wook & Kim, Man-Keun, 2021. "Household differentiation and residential electricity demand in Korea," Energy Economics, Elsevier, vol. 95(C).
    4. Fan, Jianshuang & Zhou, Lin & Zhang, Yan & Shao, Shuai & Ma, Miao, 2021. "How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas," Energy Economics, Elsevier, vol. 100(C).
    5. Day, Rosie, 2015. "Low carbon thermal technologies in an ageing society – What are the issues?," Energy Policy, Elsevier, vol. 84(C), pages 250-256.
    6. Taoyuan Wei & Qin Zhu & Solveig Glomsrød, 2017. "A General Equilibrium View of Population Ageing Impact on Energy Use via Labor Supply," Sustainability, MDPI, Open Access Journal, vol. 9(9), pages 1-12, August.
    7. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    8. Garau, Giorgio & Lecca, Patrizio & Mandras, Giovanni, 2013. "The impact of population ageing on energy use: Evidence from Italy," Economic Modelling, Elsevier, vol. 35(C), pages 970-980.
    9. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    10. Belaïd, Fateh & Rault, Christophe & Massié, Camille, 2021. "A Life-Cycle Theory Analysis of French Household Electricity Demand," IZA Discussion Papers 14010, Institute of Labor Economics (IZA).
    11. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    12. Wei, Taoyuan & Zhu, Qin & Glomsrød, Solveig, 2018. "How Will Demographic Characteristics of the Labor Force Matter for the Global Economy and Carbon Dioxide Emissions?," Ecological Economics, Elsevier, vol. 147(C), pages 197-207.
    13. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    14. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2015. "The decline in average family size and its implications for the average benefits of within‐household sharing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 760-780.
    15. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    16. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    17. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    18. Kim, Dongha & Jeong, Jinook, 2016. "Electricity restructuring, greenhouse gas emissions efficiency and employment reallocation," Energy Policy, Elsevier, vol. 92(C), pages 468-476.
    19. Belaïd, Fateh & Garcia, Thomas, 2016. "Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data," Energy Economics, Elsevier, vol. 57(C), pages 204-214.
    20. Misbah Aslam & Eatzaz Ahmad, 2018. "Impact of Ageing and Generational Effects on Household Energy Consumption Behavior: Evidence from Pakistan," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5360-:d:428052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.