IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Disentangling Temporal Patterns in Elasticities: A Functional Coefficient Panel Analysis of Electricity Demand

We introduce a panel model with a nonparametric functional coefficient of multiple arguments. The coefficient is a function both of time, allowing temporal changes in an otherwise linear model, and of the regressor itself, allowing nonlinearity. In contrast to a time series model, the effects of the two arguments can be identified using a panel model. We apply the model to the relationship between real GDP and electricity consumption. Our results suggest that the corresponding elasticities have decreased over time in developed countries, but that this decrease cannot be entirely explained by changes in GDP itself or by sectoral shifts.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://economics.missouri.edu/working-papers/2013/WP1320_miller.pdf
Download Restriction: no

Paper provided by Department of Economics, University of Missouri in its series Working Papers with number 1320.

as
in new window

Length: 40 pgs.
Date of creation: 08 Nov 2013
Date of revision:
Handle: RePEc:umc:wpaper:1320
Contact details of provider: Postal: 118 Professional Building, Columbia, MO 65211
Phone: (573) 882-0063
Fax: (573) 882-2697
Web page: http://economics.missouri.edu/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  2. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-76, April.
  3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  4. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
  5. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
  6. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-68, August.
  7. Zongwu Cai, 2002. "A two-stage approach to additive time series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(4), pages 415-433.
  8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  9. Robert K. Kaufmann, 2004. "The Mechanisms for Autonomous Energy Efficiency Increases: A Cointegration Analysis of the US Energy/GDP Ratio," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 63-86.
  10. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
  11. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
  12. Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
  13. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
  14. Rossana Galli, 1998. "The Relationship Between Energy Intensity and Income Levels: Forecasting Long Term Energy Demand in Asian Emerging Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-105.
  15. Webster, Mort & Paltsev, Sergey & Reilly, John, 2008. "Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?," Energy Economics, Elsevier, vol. 30(6), pages 2785-2798, November.
  16. Halvorsen, Robert, 1975. "Residential Demand for Electric Energy," The Review of Economics and Statistics, MIT Press, vol. 57(1), pages 12-18, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1320. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Valerie Kulp)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.