IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v30y2008i6p2785-2798.html
   My bibliography  Save this article

Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?

Author

Listed:
  • Webster, Mort
  • Paltsev, Sergey
  • Reilly, John

Abstract

Observations of historical energy consumption, energy prices, and income growth in industrial economies exhibit a trend in improving energy efficiency even when prices are constant or falling. Two alternative explanations of this phenomenon are: a productivity change that uses less energy and a structural change in the economy in response to rising income. It is not possible to distinguish among these from aggregate data, and economic energy models for forecasting emissions simulate one, as an exogenous time trend, or the other, as energy demand elasticity with respect to income, or both processes for projecting energy demand into the future. In this paper, we ask whether and how it matters which process one uses for projecting energy demand and carbon emissions. We compare two versions of the MIT Emissions Prediction and Policy Analysis (EPPA) model, one using a conventional efficiency time trend approach and the other using an income elasticity approach. We demonstrate that while these two versions yield equivalent projections in the near-term, that they diverge in two important ways: long-run projections and under uncertainty in future productivity growth. We suggest that an income dependent approach may be preferable to the exogenous approach.

Suggested Citation

  • Webster, Mort & Paltsev, Sergey & Reilly, John, 2008. "Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?," Energy Economics, Elsevier, vol. 30(6), pages 2785-2798, November.
  • Handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:2785-2798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00058-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott, Michael J. & Sands, Ronald D. & Edmonds, Jae & Liebetrau, Albert M. & Engel, David W., 1999. "Uncertainty in integrated assessment models: modeling with MiniCAM 1.0," Energy Policy, Elsevier, vol. 27(14), pages 855-879, December.
    2. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    3. Edmonds, Jae & Wise, Marshall & Barns, David W, 1995. "Carbon coalitions : The cost and effectiveness of energy agreements to alter trajectories of atmospheric carbon dioxide emissions," Energy Policy, Elsevier, vol. 23(4-5), pages 309-335.
    4. Andy S. Kydes, 1999. "Energy Intensity and Carbon Emission Responses to Technological Change: The U.S. Outlook," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-121.
    5. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    6. Henry D. Jacoby & Richard S. Eckaus & A. Denny Ellerman & Ronald G. Prinn & David M. Reiner & Zili Yang, 1997. "CO2 Emissions Limits: Economic Adjustments and the Distribution of Burdens," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 31-58.
    7. Richard B. Howarth & Lee Schipper & Bo Andersson, 1993. "The Structure and Intensity of Energy Use: Trends in Five OECD Nations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 27-46.
    8. Babiker, Mustafa H. & Metcalf, Gilbert E. & Reilly, John, 2003. "Tax distortions and global climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 269-287, September.
    9. Richard B. Howarth & Lee Schipper, 1991. "Manufacturing Energy Use in Eight OECD Countries: Trends through 1988," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-40.
    10. Sue Wing, Ian & Eckaus, Richard S., 2007. "The implications of the historical decline in US energy intensity for long-run CO2 emission projections," Energy Policy, Elsevier, vol. 35(11), pages 5267-5286, November.
    11. Sergey Paltsev & John M. Reilly & Henry D. Jacoby & Angelo C. Gurgel & Gilbert E. Metcalf & Andrei P. Sokolov & Jennifer F. Holak, 2007. "Assessment of U.S. Cap-and-Trade Proposals," NBER Working Papers 13176, National Bureau of Economic Research, Inc.
    12. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685.
    13. William W. Hogan & Dale W. Jorgenson, 1991. "Productivity Trends and the Cost of Reducing CO2 Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 67-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Baffes, 2014. "Global Economic Prospects : Commodity Markets Outlook, October 2014," World Bank Publications, The World Bank, number 20455.
    2. Xavier Labandeira & Baltazar Manzano, 2012. "Some Economic Aspects of Energy Security," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 47-64.
    3. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    4. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    5. repec:ers:journl:v:xv:y:2012:i:sie:p:47-64 is not listed on IDEAS
    6. Johannes Emmerling & Laurent Drouet & Lara Aleluia Reis & Michela Bevione & Loic Berger & Valentina Bosetti & Samuel Carrara & Enrica De Cian & Gauthier De Maere D'Aertrycke & Tom Longden & Maurizio M, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," Working Papers 2016.42, Fondazione Eni Enrico Mattei.
    7. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    8. repec:eee:eneeco:v:68:y:2017:i:s1:p:17-32 is not listed on IDEAS
    9. Ashwin K Seshadri, 2017. "Economics of limiting cumulative CO2 emissions," Papers 1706.03502, arXiv.org.
    10. Miklós Antal & Jeroen van den Bergh, 2014. "Energy rebound due to re-spending: a growing concern," WWWforEurope Policy Paper series 9, WWWforEurope.
    11. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    12. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
    13. Olivier Durand-Lasserve & Lorenza Campagnolo & Jean Chateau & Rob Dellink, 2015. "Modelling of Distributional Impacts of Energy Subsidy Reforms: an Illustration with Indonesia," Working Papers 2015.68, Fondazione Eni Enrico Mattei.
    14. Shrestha, Ram M. & Rajbhandari, Salony, 2010. "Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal," Energy Policy, Elsevier, vol. 38(9), pages 4818-4827, September.
    15. Octaviano, Claudia & Paltsev, Sergey & Gurgel, Angelo Costa, 2016. "Climate change policy in Brazil and Mexico: Results from the MIT EPPA model," Energy Economics, Elsevier, vol. 56(C), pages 600-614.
    16. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2016. "Disentangling temporal patterns in elasticities: A functional coefficient panel analysis of electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 232-243.
    17. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    18. Baffes, John & Dennis, Allen, 2013. "Long-term drivers of food prices," Policy Research Working Paper Series 6455, The World Bank.
    19. DURAND-LASSERVE, Olivier & Pierru , Axel & SMEERS, Yves, 2012. "Sensitivity of policy simulation to benchmark scenarios in CGE models: illustration with carbon leakage," CORE Discussion Papers 2012063, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Lim, Jong-Soo & Kim, Yong-Gun, 2012. "Combining carbon tax and R&D subsidy for climate change mitigation," Energy Economics, Elsevier, vol. 34(S3), pages 496-502.
    21. Sharabaroff, Alexander & Boyd, Roy & Chimeli, Ariaster, 2009. "The environmental and efficiency effects of restructuring on the electric power sector in the United States: An empirical analysis," Energy Policy, Elsevier, vol. 37(11), pages 4884-4893, November.
    22. Antal, Miklós & van den Bergh, Jeroen C.J.M., 2014. "Re-spending rebound: A macro-level assessment for OECD countries and emerging economies," Energy Policy, Elsevier, vol. 68(C), pages 585-590.
    23. Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John M. & Morris, Jennifer F. & Babiker, Mustafa H., 2016. "Long-term economic modeling for climate change assessment," Economic Modelling, Elsevier, vol. 52(PB), pages 867-883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:2785-2798. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.