IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p510-d786886.html
   My bibliography  Save this article

Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China

Author

Listed:
  • Xiaowen Dai

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Xin Wu

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Yi Chen

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Yanqiu He

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Fang Wang

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Yuying Liu

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

(1) Studying the driving factors and spatiotemporal characteristics of China’s regional animal husbandry emissions is highly relevant to policy formulation. (2) Methods: We calculated the total CO 2 equivalent emissions of animal husbandry across the country and each province separately, and then used the Logarithmic Mean Divisia Index (LMDI) to analyze how the driving forces of animal husbandry emissions changed across the country and in different provinces from 2001 to 2019. (3) Results: ① During the period 2001–2019, national animal husbandry carbon emissions showed an overall downward trend. Economic growth and population contributed positively to the emissions (which means more CO 2 ), while technological advancement, structural change in agriculture, and change in the national industrial structure had negative effects (which means less CO 2 ). ② Using aspects of provincial animal husbandry, we categorized 31 provinces into four types: fluctuating rising, fast falling, slow falling, and steadily falling. Then, according to the magnitude of the different driving forces in different provinces, we classified 31 provinces into three types: economic structure adjustment-driven, technological progress-driven, and economic growth-driven. ③ The driving effects of agricultural structural change and population in some provinces are not consistent with the effects shown at the national level.

Suggested Citation

  • Xiaowen Dai & Xin Wu & Yi Chen & Yanqiu He & Fang Wang & Yuying Liu, 2022. "Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:510-:d:786886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. You, Wanhai & Lv, Zhike, 2018. "Spillover effects of economic globalization on CO2 emissions: A spatial panel approach," Energy Economics, Elsevier, vol. 73(C), pages 248-257.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    4. Ge, Suqin & Yang, Dennis Tao & Zhang, Junsen, 2018. "Population policies, demographic structural changes, and the Chinese household saving puzzle," European Economic Review, Elsevier, vol. 101(C), pages 181-209.
    5. Giuseppe Todde & Maria Caria & Filippo Gambella & Antonio Pazzona, 2017. "Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory," Agriculture, MDPI, vol. 7(10), pages 1-11, September.
    6. Sanjutha Shanmugam & Ram C. Dalal & Hans Joosten & R. J. Raison & Goh Kah Joo, 2018. "SOC Stock Changes and Greenhouse Gas Emissions Following Tropical Land Use Conversions to Plantation Crops on Mineral Soils, with a Special Focus on Oil Palm and Rubber Plantations," Agriculture, MDPI, vol. 8(9), pages 1-17, September.
    7. Robert H. Beach & Benjamin J. DeAngelo & Steven Rose & Changsheng Li & William Salas & Stephen J. DelGrosso, 2008. "Mitigation potential and costs for global agricultural greenhouse gas emissions-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 109-115, March.
    8. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    9. Fergus Green & Nicholas Stern, 2017. "China's changing economy: implications for its carbon dioxide emissions," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 423-442, May.
    10. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    11. Berhanu, Yonas & Angassa, Ayana & Aune, Jens B., 2021. "A system analysis to assess the effect of low-cost agricultural technologies on productivity, income and GHG emissions in mixed farming systems in southern Ethiopia," Agricultural Systems, Elsevier, vol. 187(C).
    12. Agras, Jean & Chapman, Duane, 1999. "A dynamic approach to the Environmental Kuznets Curve hypothesis," Ecological Economics, Elsevier, vol. 28(2), pages 267-277, February.
    13. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    14. James Chege Wangui & Paul R. Kenyon & Peter R. Tozer & James P. Millner & Sarah J. Pain, 2021. "Bioeconomic Modelling to Assess the Impacts of Using Native Shrubs on the Marginal Portions of the Sheep and Beef Hill Country Farms in New Zealand," Agriculture, MDPI, vol. 11(10), pages 1-21, October.
    15. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    16. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    2. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    3. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    4. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    5. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    6. Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    8. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    9. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    10. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    11. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    12. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    13. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    14. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    15. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    16. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    17. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    18. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    19. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    20. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:510-:d:786886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.