IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v33y2014icp82-88.html
   My bibliography  Save this article

Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach

Author

Listed:
  • Lee, Taehwee
  • Yeo, Gi-Tae
  • Thai, Vinh V.

Abstract

Because ports have been rapidly expanding, port cities have been exposed to air pollution. Air pollution in port cities that has resulted from the intense expansion of ports has become a pressing concern. Although several studies have discussed the relationship between port and city functions and a few studies have attempted to consider ports׳ environmental performance using the data envelopment analysis (DEA) approach, none have examined emerging port city issues like their environmental influence in great detail. To address these gaps, a slacks-based data envelopment analysis (SBM-DEA) model was used in this paper to assess the environmental efficiency of port cities. The labor population in respective port cities was selected as the input variable, and gross regional domestic product (GRDP) and container throughput were used as the desirable output variables. As the undesirable output variables, nitrogen oxide (NOx), sulfur oxide (SO2), and carbon dioxide (CO2) emissions were selected in the model. The results showed that Singapore, Busan, Rotterdam, Kaohsiung, Antwerp, and New York are the most environmentally efficient port cities, while Tianjin is the least environmentally efficient. The social and opportunity costs for air pollutants emissions in low efficient port cities were calculated as well.

Suggested Citation

  • Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
  • Handle: RePEc:eee:trapol:v:33:y:2014:i:c:p:82-88
    DOI: 10.1016/j.tranpol.2014.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X14000407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2014.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Hoon Yoo & Kyung-Suk Chae, 2001. "Measuring the Economic Benefits of the Ozone Pollution Control Policy in Seoul: Results of a Contingent Valuation Survey," Urban Studies, Urban Studies Journal Limited, vol. 38(1), pages 49-60, January.
    2. S.W. Lee & César Ducruet, 2009. "Spatial glocalization in Asia-Pacific hub port cities: A comparison of Hong Kong and Singapore," Post-Print halshs-00457697, HAL.
    3. César Ducruet, 2006. "Port-city relationships in Europe and Asia," Post-Print hal-03247144, HAL.
    4. Wu, Guo-Ciang & Ding, Jyh-Hong & Chen, Ping-Shun, 2012. "The effects of GSCM drivers and institutional pressures on GSCM practices in Taiwan’s textile and apparel industry," International Journal of Production Economics, Elsevier, vol. 135(2), pages 618-636.
    5. Young-Tae Chang, 2013. "Environmental efficiency of ports: a Data Envelopment Analysis approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(5), pages 467-478, September.
    6. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    7. Sung-Woo Lee & Dong-Wook Song & César Ducruet, 2008. "A tale of Asia’s world ports : The spatial evolution in global hub port cities," Post-Print hal-03247143, HAL.
    8. Sung-Woo Lee & César Ducruet, 2009. "Spatial glocalization in Asia-Pacific hub port cities : A comparison of Hong Kong and Singapore," Post-Print hal-03247141, HAL.
    9. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    10. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    11. Jorgensen, Bradley S. & Wilson, Mathew A. & Heberlein, Thomas A., 2001. "Fairness in the contingent valuation of environmental public goods: attitude toward paying for environmental improvements at two levels of scope," Ecological Economics, Elsevier, vol. 36(1), pages 133-148, January.
    12. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    13. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    14. Tongzon, Jose, 2001. "Efficiency measurement of selected Australian and other international ports using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 107-122, February.
    15. Oum, Tae Hoon & Pathomsiri, Somchai & Yoshida, Yuichiro, 2013. "Limitations of DEA-based approach and alternative methods in the measurement and comparison of social efficiency across firms in different transport modes: An empirical study in Japan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 57(C), pages 16-26.
    16. Chen, Tser-yieth, 1997. "A measurement of the resource utilization efficiency of university libraries," International Journal of Production Economics, Elsevier, vol. 53(1), pages 71-80, November.
    17. Lin, Bin & Lin, Cherng-Yuan, 2006. "Compliance with international emission regulations: Reducing the air pollution from merchant vessels," Marine Policy, Elsevier, vol. 30(3), pages 220-225, May.
    18. Fujita, Masahisa & Mori, Tomoya, 1996. "The role of ports in the making of major cities: Self-agglomeration and hub-effect," Journal of Development Economics, Elsevier, vol. 49(1), pages 93-120, April.
    19. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    20. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    21. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    22. Teng-Fei Wang & Kevin Cullinane, 2006. "The Efficiency of European Container Terminals and Implications for Supply Chain Management," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 82-99, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Young-Tae Chang & Nan Zhang, 2017. "Environmental efficiency of transportation sectors in China and Korea," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 68-93, March.
    4. Nicole Adler & Georg Hirte & Shravana Kumar & Hans-Martin Niemeier, 2022. "The impact of specialization, ownership, competition and regulation on efficiency: a case study of Indian seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 507-536, September.
    5. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    6. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    7. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    8. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    9. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    10. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    11. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    12. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    13. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    14. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    15. Shih-Heng Yu & Yu Gao & Yih-Chearng Shiue, 2017. "A Comprehensive Evaluation of Sustainable Development Ability and Pathway for Major Cities in China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    16. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
    17. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    18. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    19. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    20. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:33:y:2014:i:c:p:82-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.