IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v57y2013icp16-26.html
   My bibliography  Save this article

Limitations of DEA-based approach and alternative methods in the measurement and comparison of social efficiency across firms in different transport modes: An empirical study in Japan

Author

Listed:
  • Oum, Tae Hoon
  • Pathomsiri, Somchai
  • Yoshida, Yuichiro

Abstract

This paper measures and compares social efficiency of railway firms and airlines in Japan’s domestic intercity travel market. Unlike other efficiency studies, our input and output measures are more comprehensive because we incorporate the life-cycle CO2 emissions as an undesirable output and travelers’ time and government spending on air infrastructure as inputs. We use the nonparametric directional output distance function (DODF) together with the composite social efficiency index to analyze the yearly panel data of the three major railroads and two major airlines during 1999–2007. The results indicate that the railroads are more socially efficient than airlines. Furthermore, we discuss the inability of nonparametric DODF method for comparing the social efficiency of firms across modes.

Suggested Citation

  • Oum, Tae Hoon & Pathomsiri, Somchai & Yoshida, Yuichiro, 2013. "Limitations of DEA-based approach and alternative methods in the measurement and comparison of social efficiency across firms in different transport modes: An empirical study in Japan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 57(C), pages 16-26.
  • Handle: RePEc:eee:transe:v:57:y:2013:i:c:p:16-26
    DOI: 10.1016/j.tre.2013.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513000136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshida, Yuichiro, 2004. "Endogenous-weight TFP measurement: methodology and its application to Japanese-airport benchmarking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(2), pages 151-182, March.
    2. Yu, Ming-Miin, 2004. "Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors," Journal of Air Transport Management, Elsevier, vol. 10(5), pages 295-303.
    3. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    4. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    5. Oum, Tae H. & Tretheway, Michael W. & Waters, W. G., 1992. "Concepts, methods and purposes of productivity measurement in transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(6), pages 493-505, November.
    6. Pathomsiri, Somchai & Haghani, Ali & Dresner, Martin & Windle, Robert J., 2008. "Impact of undesirable outputs on the productivity of US airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 235-259, March.
    7. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    8. Yoshida, Yuichiro & Fujimoto, Hiroyoshi, 2004. "Japanese-airport benchmarking with the DEA and endogenous-weight TFP methods: testing the criticism of overinvestment in Japanese regional airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(6), pages 533-546, November.
    9. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    10. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    11. Atakelty Hailu, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Reply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1075-1077.
    12. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    13. Seiford, Lawrence M. & Zhu, Joe, 2005. "A response to comments on modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 161(2), pages 579-581, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marchetti, Dalmo & Wanke, Peter F., 2019. "Efficiency in rail transport: Evaluation of the main drivers through meta-analysis with resampling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 83-100.
    2. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    3. Le, Yiping & Oka, Minami & Kato, Hironori, 2022. "Efficiencies of the urban railway lines incorporating financial performance and in-vehicle congestion in the Tokyo Metropolitan Area," Transport Policy, Elsevier, vol. 116(C), pages 343-354.
    4. Stefaniec, Agnieszka & Hosseini, Keyvan & Assani, Saeed & Hosseini, Seyed Maziar & Li, Yongjun, 2021. "Social sustainability of regional transportation: An assessment framework with application to EU road transport," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    5. Ha, Hun Koo & Kaneko, Shinji & Yamamoto, Masashi & Yoshida, Yuichiro & Zhang, Anming, 2017. "On the discrepancy in the social efficiency measures between parametric and non-parametric production technology identification," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 9-14.
    6. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    7. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    8. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    9. Marchetti, Dalmo & Wanke, Peter, 2017. "Brazil's rail freight transport: Efficiency analysis using two-stage DEA and cluster-driven public policies," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 26-42.
    10. Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
    11. Tomikawa, Tadaaki & Goto, Mika, 2022. "Efficiency assessment of Japanese National Railways before and after privatization and divestiture using data envelopment analysis," Transport Policy, Elsevier, vol. 118(C), pages 44-55.
    12. Xinyu Zhuang & Li Zhang & Jie Lu, 2022. "Past—Present—Future: Urban Spatial Succession and Transition of Rail Transit Station Zones in Japan," IJERPH, MDPI, vol. 19(20), pages 1-35, October.
    13. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    14. Bhatia, Vinod & Sharma, Seema, 2021. "Expense based performance analysis and resource rationalization: Case of Indian Railways," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    2. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    3. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    4. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    5. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    6. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    7. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    8. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
    9. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    10. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    11. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    12. George Halkos & Nickolaos Tzeremes, 2014. "Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers," Journal of Productivity Analysis, Springer, vol. 41(3), pages 367-382, June.
    13. Ha, Hun Koo & Kaneko, Shinji & Yamamoto, Masashi & Yoshida, Yuichiro & Zhang, Anming, 2017. "On the discrepancy in the social efficiency measures between parametric and non-parametric production technology identification," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 9-14.
    14. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    15. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    16. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    17. Tae-Woong Yang & Joon-Ho Na & Hun-Koo Ha, 2019. "Comparative Analysis of Production Possibility Frontier in Measuring Social Efficiency with Data Envelopment Analysis: An Application to Airports," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    18. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    19. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    20. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:57:y:2013:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.