IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/44231.html
   My bibliography  Save this paper

An additive two-stage DEA approach creating sustainability efficiency indexes

Author

Listed:
  • Halkos, George
  • Tzeremes, Nickolaos

Abstract

In this paper we apply an additive two-stage data envelopment analysis (DEA) estimator on a panel of 27 Annex I countries for the time period 2006-2010 in order to create sustainability efficiency indexes. The sustainability efficiency indexes are decomposed into economic and eco-efficiency indicators. The results reveal inequalities among the examined countries between the two stages. The eco-efficiency stage is characterized by large inequalities among countries and significantly lower efficiency scores than the overall or/and the economic efficiency stages. Finally, it is reported that a country’s high economic efficiency level does not ensure a high eco-efficiency performance.

Suggested Citation

  • Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:44231
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/44231/1/MPRA_paper_44231.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rolf Färe & Shawna Grosskopf, 2007. "A Comment on Weak Disposability in Nonparametric Production Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(2), pages 535-538.
    2. Andrés J. Picazo-Tadeo & José A. Gómez-Limón & Ernest Reig-Martínez, 2010. "Assessing farming eco-efficiency: A Data Envelopment Analysis approach," Working Papers 1004, Department of Applied Economics II, Universidad de Valencia.
    3. Chen, Chialin & Zhu, Joe & Yu, Jiun-Yu & Noori, Hamid, 2012. "A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 221(2), pages 348-359.
    4. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    5. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    6. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    7. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    8. Thomas Sexton & Herbert Lewis, 2003. "Two-Stage DEA: An Application to Major League Baseball," Journal of Productivity Analysis, Springer, vol. 19(2), pages 227-249, April.
    9. Epstein, L. & Denny, M., 1980. "Endogenous capital utilization in a short-run production model : Theory and an empiral application," Journal of Econometrics, Elsevier, vol. 12(2), pages 189-207, February.
    10. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    11. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    12. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    13. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    14. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    15. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    16. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    17. Taskin, Fatma & Zaim, Osman, 2001. "The role of international trade on environmental efficiency: a DEA approach," Economic Modelling, Elsevier, vol. 18(1), pages 1-17, January.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale on U.S. fossil fuel power plants: Radial and non-radial approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 34(6), pages 2240-2259.
    19. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    20. Zofio, Jose L. & Prieto, Angel M., 2001. "Environmental efficiency and regulatory standards: the case of CO2 emissions from OECD industries," Resource and Energy Economics, Elsevier, vol. 23(1), pages 63-83, January.
    21. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    22. Timo Kuosmanen & Victor Podinovski, 2008. "Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(2), pages 539-545.
    23. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    24. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    25. Hwang, Shiuh-Nan & Chen, Chialin & Chen, Yao & Lee, Hsuan-Shih & Shen, Pei-Di, 2013. "Sustainable design performance evaluation with applications in the automobile industry: Focusing on inefficiency by undesirable factors," Omega, Elsevier, vol. 41(3), pages 553-558.
    26. Seiford, Lawrence M. & Zhu, Joe, 2005. "A response to comments on modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 161(2), pages 579-581, March.
    27. Callens, Isabelle & Tyteca, Daniel, 1999. "Towards indicators of sustainable development for firms: A productive efficiency perspective," Ecological Economics, Elsevier, vol. 28(1), pages 41-53, January.
    28. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    29. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    30. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    31. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    32. Feldstein, Martin S & Foot, David K, 1971. "The Other Half of Gross Investment: Replacement and Modernization Expenditures," The Review of Economics and Statistics, MIT Press, vol. 53(1), pages 49-58, February.
    33. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    34. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    35. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    36. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    37. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    38. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    39. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    40. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    41. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    42. Tol, Richard S. J., 2001. "Equitable cost-benefit analysis of climate change policies," Ecological Economics, Elsevier, vol. 36(1), pages 71-85, January.
    43. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    44. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    45. Halkos, George, 2010. "Construction of abatement cost curves: The case of F-gases," MPRA Paper 26532, University Library of Munich, Germany.
    46. Atakelty Hailu, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Reply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1075-1077.
    47. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    48. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization)," Energy Economics, Elsevier, vol. 34(3), pages 663-676.
    49. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    50. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    51. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    2. Tihana Škrinjarić, 2021. "Ranking Environmental Aspects of Sustainable Tourism: Case of Selected European Countries," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    3. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    2. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    5. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    6. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    7. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    8. Halkos, George & Tzeremes, Nickolaos, 2011. "Regional environmental efficiency and economic growth: NUTS2 evidence from Germany, France and the UK," MPRA Paper 33698, University Library of Munich, Germany.
    9. Halkos, George & Tzeremes, Nickolaos, 2011. "Kuznets curve and environmental performance: evidence from China," MPRA Paper 34312, University Library of Munich, Germany.
    10. Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
    11. George Halkos & Nickolaos Tzeremes, 2014. "Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers," Journal of Productivity Analysis, Springer, vol. 41(3), pages 367-382, June.
    12. Halkos, George & Tzeremes, Nickolaos, 2012. "Regional economic growth and environmental efficiency in greenhouse emissions: A conditional directional distance function approach," MPRA Paper 40015, University Library of Munich, Germany.
    13. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    14. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    15. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    16. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    17. George Halkos & Nickolaos Tzeremes, 2012. "Measuring German regions’ environmental efficiency: a directional distance function approach," Letters in Spatial and Resource Sciences, Springer, vol. 5(1), pages 7-16, March.
    18. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    19. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    20. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.

    More about this item

    Keywords

    Additive two-stage DEA; Sustainability efficiency index; Annex I countries;
    All these keywords.

    JEL classification:

    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:44231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.