IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries

  • Sueyoshi, Toshiyuki
  • Goto, Mika
Registered author(s):

    The economic concept of weak and strong disposability has long dominated studies on DEA (Data Envelopment Analysis) environmental assessment. This study reviews the two disposability concepts from their conceptual and methodological implications. In particular, this study is interested in the concept of weak disposability because the concept is believed to have an analytical capability to measure an occurrence of “congestion”. The two economic concepts on disposability, accepted by production economists, are replaced by natural and managerial disposability in this study. The natural disposability implies an environmental strategy by which a firm attempts to decrease an input vector to reduce a vector of undesirable outputs. Given the decreased input vector, a firm attempts to increase a vector of desirable outputs as much as possible. This type of strategy indicates negative adaptation. In contrast, the managerial disposability indicates an opposite strategy by increasing the input vector. This disposability expresses an environmental strategy by which a firm considers a regulation change as a new business opportunity. A firm attempts to improve its unified performance by utilizing new clean air technology and/or new management. The strategy indicates positive adaptation. Considering the two groups of disposability, this study compares between weak/strong disposability and natural/managerial disposability in terms of their conceptual and methodological differences, focusing upon the concept of congestion and technology innovation. Furthermore, using the concept of natural and managerial disposability, this study compares Japanese electric power firms with manufacturing firms. This study finds that the manufacturing firms outperform the electric power firms under natural disposability. An opposite result is found under managerial disposability. This empirical study also finds that the two groups of Japanese firms have attained desirable (good) congestion due to technology innovation. Based upon such empirical results, this study identifies two policy implications. One of the two implications is that the two groups of Japanese industries have attained a high level of technology innovation by a result of environmental regulation. The other is that the electric power industry operates more efficiently to reduce the CO2 emission than the manufacturing industries.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988311002684
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Economics.

    Volume (Year): 34 (2012)
    Issue (Month): 3 ()
    Pages: 686-699

    as
    in new window

    Handle: RePEc:eee:eneeco:v:34:y:2012:i:3:p:686-699
    Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Karen Palmer & Wallace E. Oates & Paul R. Portney, 1995. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 119-132, Fall.
    2. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    3. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 684-693, May.
    6. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    7. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    8. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    10. Triantis, Konstantinos & Otis, Paul, 2004. "Dominance-based measurement of productive and environmental performance for manufacturing," European Journal of Operational Research, Elsevier, vol. 154(2), pages 447-464, April.
    11. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms," Energy Economics, Elsevier, vol. 34(3), pages 645-662.
    12. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    13. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    14. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    15. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    16. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
    17. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of Data Envelopment Analysis with strong complementary slackness condition," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1742-1753, December.
    19. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    20. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    21. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    22. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Measurement of Returns to Scale and Damages to Scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs?," European Journal of Operational Research, Elsevier, vol. 211(1), pages 76-89, May.
    23. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    24. Fare, Rolf & Grosskopf, Shawna, 2000. "Slacks and congestion: a comment," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 27-33, March.
    25. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    26. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    27. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization)," Energy Economics, Elsevier, vol. 34(3), pages 663-676.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:3:p:686-699. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.