IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v34y2012i6p1854-1863.html
   My bibliography  Save this article

DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models

Author

Listed:
  • Sueyoshi, Toshiyuki
  • Goto, Mika

Abstract

This study discusses how to apply Data Environment Analysis (DEA) for environmental assessment. A unique feature of DEA environmental assessment is that it classifies outputs into desirable (good) and undesirable (bad) outputs because many firms often produce not only desirable outputs but also undesirable outputs as a result of their economic activities. A methodological difficulty of DEA applications is how to combine operational performance on desirable outputs and environmental performance on undesirable outputs in a unified treatment. Although previous DEA environmental studies have utilized mainly radial models and their extensions, this study uses a non-radial DEA model for the output unification because the non-radial model can unify the two types of outputs more easily than the radial models. This study incorporates three types of output unification in DEA environmental assessment. The first unification considers both an increase and a decrease in an input vector along with a decrease in the direction vector of undesirable outputs. This type of unification measures “unified efficiency”. The second unification considers a decrease in an input vector along with a decrease in the vector of undesirable outputs. This type of unification is referred to as “natural disposability” and measures “unified efficiency under natural disposability”. The third unification considers an increase in an input vector but a decrease in the vector of undesirable outputs. This type of unification is referred to as “managerial disposability” and measures “unified efficiency under managerial disposability”. All the unifications increase the vector of desirable outputs. Using the output unification under natural and managerial disposability, this study examines methodological strengths and drawbacks of the proposed non-radial approach. Moreover, using a data set on U.S. coal fired power plants, we compare methodological strengths and drawbacks of radial and non-radial models for DEA environmental assessments. The methodological comparison is important in guiding a large energy issue because policy implications depend upon a methodology(s) used for an empirical study.

Suggested Citation

  • Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:6:p:1854-1863
    DOI: 10.1016/j.eneco.2012.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988312001442
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    2. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    3. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions," Energy Economics, Elsevier, vol. 34(3), pages 700-713.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    6. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    7. Triantis, Konstantinos & Otis, Paul, 2004. "Dominance-based measurement of productive and environmental performance for manufacturing," European Journal of Operational Research, Elsevier, vol. 154(2), pages 447-464, April.
    8. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of Data Envelopment Analysis with strong complementary slackness condition," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1742-1753, December.
    10. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to Scale, Damages to Scale, Marginal Rate of Transformation and Rate of Substitution in DEA Environmental Assessment," Energy Economics, Elsevier, vol. 34(4), pages 905-917.
    11. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    12. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA)," Energy Economics, Elsevier, vol. 34(3), pages 634-644.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
    15. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    16. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization)," Energy Economics, Elsevier, vol. 34(3), pages 663-676.
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    18. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    19. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Measurement of Returns to Scale and Damages to Scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs?," European Journal of Operational Research, Elsevier, vol. 211(1), pages 76-89, May.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms," Energy Economics, Elsevier, vol. 34(3), pages 645-662.
    21. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    22. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    23. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    24. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA radial measurement for environmental assessment and planning: Desirable procedures to evaluate fossil fuel power plants," Energy Policy, Elsevier, vol. 41(C), pages 422-432.
    25. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    26. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 684-693, May.
    27. Yuji Ijiri & Toshiyuki Sueyoshi, 2010. "Accounting Essays by Professor William W. Cooper: Revisiting in Commemoration of his Ninety‐Fifth Birthday," Abacus, Accounting Foundation, University of Sydney, vol. 46(4), pages 464-505, December.
    28. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Environmental Assessment; DEA; Disposability;

    JEL classification:

    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:6:p:1854-1863. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.