IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v77y2015icp1-13.html
   My bibliography  Save this article

Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis

Author

Listed:
  • Zahabi, Seyed Amir H.
  • Miranda-Moreno, Luis
  • Patterson, Zachary
  • Barla, Philippe

Abstract

This work examines the temporal–spatial variations of daily automobile distance traveled and greenhouse gas emissions (GHGs) and their association with built environment attributes and household socio-demographics. A GHGs household inventory is determined using link-level average speeds for a large and representative sample of households in three origin–destination surveys (1998, 2003 and 2008) in Montreal, Canada. For the emission inventories, different sources of data are combined including link-level average speeds in the network, vehicle occupancy levels and fuel consumption characteristics of the vehicle fleet. Urban form indicators over time such as population density, land use mix and transit accessibility are generated for each household in each of the three waves. A latent class (LC) regression modeling framework is then implemented to investigate the association of built environment and socio-demographics with GHGs and automobile distance traveled. Among other results, it is found that population density, transit accessibility and land-use mix have small but statistically significant negative impact on GHGs and car usage. Despite that this is in accordance with past studies, the estimated elasticities are greater than those reported in the literature for North American cities. Moreover, different household subpopulations are identified in which the effect of built environment varies significantly. Also, a reduction of the average GHGs at the household level is observed over time. According to our estimates, households produced 15% and 10% more GHGs in 1998 and 2003 respectively, compared to 2008. This reduction can be associated to the improvement of the fuel economy of vehicle fleet and the decrease of motor-vehicle usage – e.g., a decrease of 4% is observed for fuel efficiency rates and 12% for distance according to the raw average estimates from 1998 with respect to 2008. A strong link is also observed between socio-demographics and the two travel outcomes. While number of workers is positively associated with car distance and GHGs, low and medium income households pollute less than high-income households.

Suggested Citation

  • Zahabi, Seyed Amir H. & Miranda-Moreno, Luis & Patterson, Zachary & Barla, Philippe, 2015. "Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 1-13.
  • Handle: RePEc:eee:transa:v:77:y:2015:i:c:p:1-13
    DOI: 10.1016/j.tra.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415000798
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    2. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    3. Susan Handy, 2005. "Smart Growth and the Transportation-Land Use Connection: What Does the Research Tell Us?," International Regional Science Review, , vol. 28(2), pages 146-167, April.
    4. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    5. Cao, Xinyu & Mokhtarian, Patricia & Handy, Susan, 2008. "Examining The Impacts of Residential Self-Selection on Travel Behavior: Methodologies and Empirical Findings," Institute of Transportation Studies, Working Paper Series qt08x1k476, Institute of Transportation Studies, UC Davis.
    6. Bento, Antonio M. & Cropper, Maureen L. & Mobarak, Ahmed Mushfiq & Vinha, Katja, 2003. "The impact of urban spatial structure on travel demand in the United States," Policy Research Working Paper Series 3007, The World Bank.
    7. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Amir H. Zahabi & Luis Miranda-Moreno & Zachary Patterson & Philippe Barla, 2017. "Impacts of built environment and emerging green technologies on daily transportation greenhouse gas emissions in Quebec cities: a disaggregate modeling approach," Transportation, Springer, vol. 44(1), pages 159-180, January.
    2. repec:eee:transa:v:103:y:2017:i:c:p:235-249 is not listed on IDEAS
    3. repec:eee:eneeco:v:64:y:2017:i:c:p:251-261 is not listed on IDEAS

    More about this item

    Keywords

    Greenhouse gas emissions; Neighborhood typologies; Latent class regression; Travel behavior; Built environment characteristics;

    JEL classification:

    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:77:y:2015:i:c:p:1-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.