IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i2p157-d492896.html
   My bibliography  Save this article

Urban Development and Sustainable Mobility: A Spatial Analysis in the Buenos Aires Metropolitan Area

Author

Listed:
  • Lorea Mendiola

    (Department of Applied Economics I, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
    These authors contributed equally to this work.)

  • Pilar González

    (Department of Quantitative Methods & Institute for Public Economics, University of the Basque Country (UPV/EHU), 48015 Bilbao, Spain
    These authors contributed equally to this work.)

Abstract

This study provides empirical evidence on the links between urban development factors and the use of specific modes of transport in commuting in the Buenos Aires metropolitan area. The case study is of interest because quantitative research on developing countries is scarce and their rapid urban growth and high rates of inequality may generate different results compared to the US or Europe. This relationship was assessed on locality level using regression methods. Spatial econometric techniques were applied to avoid unreliable inferences generated by spatial dependence and to detect the existence of externalities. Furthermore, we include in the model the socio-economic profile of each locality identified using cluster analysis. The findings reveal that population density affects motorised transport, that diversity is relevant for public transport and non-motorised trips, and urban design characteristics affect all modes of transport. Spatial dependence is detected for motorised transport, which may imply the existence of externalities, suggesting the need for coordinated decision-making processes on a metropolitan level. Finally, modal split depends on the socio-economic profile of a locality, which may influence the response to public transport policies. To sum up, these results may be useful when it comes to helping policymakers design integrated public policies on urban and transport planning.

Suggested Citation

  • Lorea Mendiola & Pilar González, 2021. "Urban Development and Sustainable Mobility: A Spatial Analysis in the Buenos Aires Metropolitan Area," Land, MDPI, vol. 10(2), pages 1-23, February.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:157-:d:492896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/2/157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/2/157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dennis van Soest & Miles R. Tight & Christopher D. F. Rogers, 2020. "Exploring the distances people walk to access public transport," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 160-182, March.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Yu, Nannan & de Jong, Martin & Storm, Servaas & Mi, Jianing, 2013. "Spatial spillover effects of transport infrastructure: evidence from Chinese regions," Journal of Transport Geography, Elsevier, vol. 28(C), pages 56-66.
    4. Susan Handy & Bert van Wee & Maarten Kroesen, 2014. "Promoting Cycling for Transport: Research Needs and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(1), pages 4-24, January.
    5. Guerra, Erick & Caudillo, Camilo & Monkkonen, Paavo & Montejano, Jorge, 2018. "Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas," Transport Policy, Elsevier, vol. 69(C), pages 98-105.
    6. Tim Schwanen & Patricia L. Mokhtarian, 2007. "Attitudes toward travel and land use and choice of residential neighborhood type: Evidence from the San Francisco bay area," Housing Policy Debate, Taylor & Francis Journals, vol. 18(1), pages 171-207, January.
    7. Thomson, Ian & Bull, Alberto, 2002. "La congestión del tránsito urbano: causas y consecuencias económicas y sociales," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    8. Robert Cervero & Hiroaki Suzuki & Kanako Iuchi, 2013. "Transforming Cities with Transit : Transit and Land-Use Integration for Sustainable Urban Development [Transformando las ciudades con el transporte público : integración del transporte público y el," World Bank Publications - Books, The World Bank Group, number 12233, April.
    9. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    10. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    11. Mokhtarian, Patricia L & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," University of California Transportation Center, Working Papers qt8bz3z5qm, University of California Transportation Center.
    12. Karim W. F. Youssef, 2018. "The built environment and public health," Community Development, Taylor & Francis Journals, vol. 49(1), pages 121-122, January.
    13. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    15. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    16. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    17. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    18. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    19. Masoumi, Houshmand E., 2019. "A discrete choice analysis of transport mode choice causality and perceived barriers of sustainable mobility in the MENA region," Transport Policy, Elsevier, vol. 79(C), pages 37-53.
    20. Julian Arellana & María Saltarín & Ana Margarita Larrañaga & Vilma Alvarez & César Augusto Henao, 2020. "Urban walkability considering pedestrians’ perceptions of the built environment: a 10-year review and a case study in a medium-sized city in Latin America," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 183-203, March.
    21. Robert B. Cervero, 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    22. Yanez-Pagans, Patricia & Martinez, Daniel & Mitnik, Oscar A. & Scholl, Lynn & Vazquez, Antonia, 2018. "Urban Transport Systems in Latin America and the Caribbean: Challenges and Lessons Learned," IZA Discussion Papers 11812, Institute of Labor Economics (IZA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxwell Umunna Nwachukwu & Clement Obinna & Uloma Jiburum & Donald Chiuba Okeke, 2023. "Analysis of Modal Split of Intra-urban Trips in a Centenary City: A Case Study of Enugu, Nigeria," SAGE Open, , vol. 13(1), pages 21582440231, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiola, Lorea & González, Pilar & Cebollada, Àngel, 2014. "The link between urban development and the modal split in commuting: the case of Biscay," Journal of Transport Geography, Elsevier, vol. 37(C), pages 1-9.
    2. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    3. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    4. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    5. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    6. Erick Guerra & Shengxiao Li & Ariadna Reyes, 2022. "How do low-income commuters get to work in US and Mexican cities? A comparative empirical assessment," Urban Studies, Urban Studies Journal Limited, vol. 59(1), pages 75-96, January.
    7. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    8. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    9. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    10. Janke, Julia, 2021. "Re-visiting residential self-selection and dissonance: Does intra-household decision-making change the results?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 379-401.
    11. Charles Raux & Ayana Lamatkhanova & Lény Grassot, 2021. "Does the built environment shape commuting? The case of Lyon (France)," Post-Print halshs-03010833, HAL.
    12. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Rahman, Mashrur & Sciara, Gian-Claudia, 2022. "Travel attitudes, the built environment and travel behavior relationships: Causal insights from social psychology theories," Transport Policy, Elsevier, vol. 123(C), pages 44-54.
    14. Zahabi, Seyed Amir H. & Miranda-Moreno, Luis & Patterson, Zachary & Barla, Philippe, 2015. "Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 1-13.
    15. Ottelin, Juudit & Heinonen, Jukka & Junnila, Seppo, 2014. "Greenhouse gas emissions from flying can offset the gain from reduced driving in dense urban areas," Journal of Transport Geography, Elsevier, vol. 41(C), pages 1-9.
    16. Mendiola, Lorea & González, Pilar, 2018. "Temporal dynamics in the relationship between land use factors and modal split in commuting: A local case study," Land Use Policy, Elsevier, vol. 77(C), pages 267-278.
    17. François Des Rosiers & Marius Thériault & Gjin Biba & Marie-Hélène Vandersmissen, 2017. "Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices," Environment and Planning B, , vol. 44(5), pages 964-985, September.
    18. Andrew Perumal & David Timmons, 2017. "Contextual Density and US Automotive CO2 Emissions across the Rural–Urban Continuum," International Regional Science Review, , vol. 40(6), pages 590-615, November.
    19. Keskisaari, Ville & Ottelin, Juudit & Heinonen, Jukka, 2017. "Greenhouse gas impacts of different modality style classes using latent class travel behavior model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 155-164.
    20. Qian Liu & James Wang & Peng Chen & Zuopeng Xiao, 2017. "How does parking interplay with the built environment and affect automobile commuting in high-density cities? A case study in China," Urban Studies, Urban Studies Journal Limited, vol. 54(14), pages 3299-3317, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:157-:d:492896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.