A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2013.07.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- V. Kumar & Trichy V. Krishnan, 2002. "Multinational Diffusion Models: An Alternative Framework," Marketing Science, INFORMS, vol. 21(3), pages 318-330, July.
- Chiang, Su-Yun, 2012. "An application of Lotka–Volterra model to Taiwan's transition from 200mm to 300mm silicon wafers," Technological Forecasting and Social Change, Elsevier, vol. 79(2), pages 383-392.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601, April.
- Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601.
- Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
- Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gatabazi, P. & Mba, J.C. & Pindza, E. & Labuschagne, C., 2019. "Grey Lotka–Volterra models with application to cryptocurrencies adoption," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 47-57.
- Addolorata Marasco & Alessandro Romano, 2018. "Deterministic modeling in scenario forecasting: estimating the effects of two public policies on intergenerational conflict," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2345-2371, September.
- Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
- Scholten, Daniel & Bosman, Rick, 2016. "The geopolitics of renewables; exploring the political implications of renewable energy systems," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 273-283.
- Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
- Capasso, Marco & Hansen, Teis & Heiberg, Jonas & Klitkou, Antje & Steen, Markus, 2019. "Green growth – A synthesis of scientific findings," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 390-402.
- Duan, Hongbo & Zhang, Gupeng & Wang, Shouyang & Fan, Ying, 2018. "Peer interaction and learning: Cross-country diffusion of solar photovoltaic technology," Journal of Business Research, Elsevier, vol. 89(C), pages 57-66.
- Amankwah-Amoah, Joseph & Sarpong, David, 2016. "Historical pathways to a green economy: The evolution and scaling-up of solar PV in Ghana, 1980–2010," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 90-101.
- Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
- Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
- Marasco, A. & Picucci, A. & Romano, A., 2016. "Market share dynamics using Lotka–Volterra models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 49-62.
- Goran Dominioni & Addolorata Marasco & Alessandro Romano, 2018. "A mathematical approach to study and forecast racial groups interactions: deterministic modeling and scenario method," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1929-1956, July.
- Anita M. Bunea & Mariangela Guidolin & Piero Manfredi & Pompeo Della Posta, 2022. "Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns," Forecasting, MDPI, vol. 4(2), pages 1-21, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
- Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
- Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
- Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601.
- Dalla Valle, Alessandra & Furlan, Claudia, 2014. "Diffusion of nuclear energy in some developing countries," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 143-153.
- Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
- Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
- Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601, April.
- Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
- Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
- Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
- Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.
- Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
- Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
- Meeran, Sheik & Jahanbin, Semco & Goodwin, Paul & Quariguasi Frota Neto, Joao, 2017. "When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?," European Journal of Operational Research, Elsevier, vol. 258(2), pages 512-524.
- Meizhen Zhang & Tao Lv & Xu Deng & Yuanxu Dai & Muhammad Sajid, 2019. "Diffusion of China’s coal-fired power generation technologies: historical evolution and development trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 7-23, January.
- Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
More about this item
Keywords
Technological diffusion; Wind energy; Photovoltaic solar technology; Competitive relationship; Scale-dependence effect; Lotka–Volterra model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:83:y:2014:i:c:p:156-169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.