IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v139y2019icp321-333.html
   My bibliography  Save this article

An empirical analysis of county-level residential PV adoption in California

Author

Listed:
  • Kurdgelashvili, Lado
  • Shih, Cheng-Hao
  • Yang, Fan
  • Garg, Mehul

Abstract

To understand long term PV deployment, it is important to explore the underlying mechanisms that drive PV market diffusion. This paper examines the relationships between several social and economic factors and residential PV market diffusion on a county level. The Bass diffusion model was used to estimate diffusion parameters for 46 counties in California. Regression analysis was then applied to find associations between these parameters and several socio-demographic, economic, and political variables in each county. Finally, a Generalized Bass Model was employed to explore the price effect on PV diffusion. We have found supporting evidence of the inverse relationship between attainment of higher education and the coefficient of imitation. We have clearly shown evidence for heterogeneity between counties in one or more of our observed dimensions, or unobserved and possibly confounding factors. Although not significant at the conventional 5% and 10% levels, our Generalized Bass Model nonetheless supports the presence of price-based fluctuations in adoption rates.

Suggested Citation

  • Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
  • Handle: RePEc:eee:tefoso:v:139:y:2019:i:c:p:321-333
    DOI: 10.1016/j.techfore.2018.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517309307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    2. Parker, Philip M., 1994. "Aggregate diffusion forecasting models in marketing: A critical review," International Journal of Forecasting, Elsevier, vol. 10(2), pages 353-380, September.
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    4. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    5. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    6. Kurdgelashvili, Lado & Li, Junli & Shih, Cheng-Hao & Attia, Benjamin, 2016. "Estimating technical potential for rooftop photovoltaics in California, Arizona and New Jersey," Renewable Energy, Elsevier, vol. 95(C), pages 286-302.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Corrado Di Maria & Susana Ferreira & Emiliya Lazarova, 2010. "Shedding Light On The Light Bulb Puzzle: The Role Of Attitudes And Perceptions In The Adoption Of Energy Efficient Light Bulbs," Scottish Journal of Political Economy, Scottish Economic Society, vol. 57(1), pages 48-67, February.
    9. Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601, April.
    10. Drury, Easan & Miller, Mackay & Macal, Charles M. & Graziano, Diane J. & Heimiller, Donna & Ozik, Jonathan & Perry IV, Thomas D., 2012. "The transformation of southern California's residential photovoltaics market through third-party ownership," Energy Policy, Elsevier, vol. 42(C), pages 681-690.
    11. Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601.
    12. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    13. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    14. Maribu, Karl Magnus & Firestone, Ryan M. & Marnay, Chris & Siddiqui, Afzal S., 2007. "Distributed energy resources market diffusion model," Energy Policy, Elsevier, vol. 35(9), pages 4471-4484, September.
    15. Vijay Mahajan & Eitan Muller & Frank M. Bass, 1995. "Diffusion of New Products: Empirical Generalizations and Managerial Uses," Marketing Science, INFORMS, vol. 14(3_supplem), pages 79-88.
    16. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    17. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    18. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    19. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    20. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    21. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    22. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    23. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    24. Nadia Ameli & Nicola Brandt, 2014. "Determinants of Households' Investment in Energy Efficiency and Renewables: Evidence from the OECD Survey on Household Environmental Behaviour and Attitudes," OECD Economics Department Working Papers 1165, OECD Publishing.
    25. Rai, Varun & Reeves, D. Cale & Margolis, Robert, 2016. "Overcoming barriers and uncertainties in the adoption of residential solar PV," Renewable Energy, Elsevier, vol. 89(C), pages 498-505.
    26. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    27. Cai, Desmond W.H. & Adlakha, Sachin & Low, Steven H. & De Martini, Paul & Mani Chandy, K., 2013. "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, Elsevier, vol. 62(C), pages 830-843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fikru, Mahelet G. & Canfield, Casey, 2022. "Demand for renewable energy via green electricity versus solar installation in Community Choice Aggregation," Renewable Energy, Elsevier, vol. 186(C), pages 769-779.
    2. Best, Rohan, 2022. "Energy inequity variation across contexts," Applied Energy, Elsevier, vol. 309(C).
    3. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    4. Irfan, Mohd & Yadav, Sarvendra & Shaw, Krishnendu, 2021. "The adoption of solar photovoltaic technology among Indian households: Examining the influence of entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    5. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    6. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
    7. Teng, Fei & Zhang, Qi & Chen, Siyuan & Wang, Ge & Huang, Zhenyue & Wang, Lu, 2024. "Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning," Energy Policy, Elsevier, vol. 185(C).
    8. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Fikru, Mahelet G., 2020. "Determinants of electricity bill savings for residential solar panel adopters in the U.S.: A multilevel modeling approach," Energy Policy, Elsevier, vol. 139(C).
    10. Tinta, Abdoulganiour Almame & Sylla, Ahmed Yves & Lankouande, Edmond, 2023. "Solar PV adoption in rural Burkina Faso," Energy, Elsevier, vol. 278(PB).
    11. Kulmer, Veronika & Seebauer, Sebastian & Hinterreither, Helene & Kortschak, Dominik & Theurl, Michaela C. & Haas, Willi, 2022. "Transforming the s-shape: Identifying and explaining turning points in market diffusion curves of low-carbon technologies in Austria," Research Policy, Elsevier, vol. 51(1).
    12. Nepal, Rabindra & Best, Rohan & Taylor, Madeline, 2023. "Strategies for reducing ethnic inequality in energy outcomes: A Nepalese example," Energy Economics, Elsevier, vol. 126(C).
    13. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    2. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    3. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    4. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    5. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    6. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    7. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    8. Ang, James B. & Fredriksson, Per G. & Sharma, Swati, 2020. "Individualism and the adoption of clean energy technology," Resource and Energy Economics, Elsevier, vol. 61(C).
    9. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    12. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    13. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    14. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    15. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    16. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    17. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    18. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    19. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    20. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:139:y:2019:i:c:p:321-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.