IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v144y2019icp553-562.html
   My bibliography  Save this article

Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach

Author

Listed:
  • Kiani Mavi, Reza
  • Saen, Reza Farzipoor
  • Goh, Mark

Abstract

The joint investigation of economic growth and environmental impact has led research to develop evaluation models on environmental and economic changes, especially on eco-innovation and eco-efficient products. In this paper, a novel approach is proposed to find the common set of weights in a two-stage network data envelopment analysis based on goal programming to analyze the joint effects of eco-efficiency and eco-innovation, considering the undesirable inputs, intermediate products, and the outputs in the context of big data. Applying the model to the countries in the OECD and ranking the results show that Switzerland is highest in eco-efficiency and Estonia is highest in eco-innovation.

Suggested Citation

  • Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
  • Handle: RePEc:eee:tefoso:v:144:y:2019:i:c:p:553-562
    DOI: 10.1016/j.techfore.2018.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517313306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongyoon Suh & Hyeonju Seol & Hyerim Bae & Yongtae Park, 2014. "Eco-efficiency Based on Social Performance and its Relationship with Financial Performance," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 909-919, December.
    2. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.
    3. Hatefi, S.M. & Torabi, S.A., 2010. "A common weight MCDA-DEA approach to construct composite indicators," Ecological Economics, Elsevier, vol. 70(1), pages 114-120, November.
    4. Chen, Lei & Wang, Ying-Ming & Lai, Fujun, 2017. "Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments," European Journal of Operational Research, Elsevier, vol. 260(2), pages 655-664.
    5. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    6. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    8. Rosa Dangelico & Devashish Pujari, 2010. "Mainstreaming Green Product Innovation: Why and How Companies Integrate Environmental Sustainability," Journal of Business Ethics, Springer, vol. 95(3), pages 471-486, September.
    9. Hansen, Zeynep K. & Lowe, Scott E. & Xu, Wenchao, 2014. "Long-term impacts of major water storage facilities on agriculture and the natural environment: Evidence from Idaho (U.S.)," Ecological Economics, Elsevier, vol. 100(C), pages 106-118.
    10. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun & Managi, Shunsuke, 2015. "The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions," Omega, Elsevier, vol. 53(C), pages 30-40.
    11. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    13. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    14. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    15. Kao, Chiang, 2010. "Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization," Omega, Elsevier, vol. 38(6), pages 484-491, December.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    18. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    19. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    20. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    21. Li, Wanghong & Li, Zhepeng & Liang, Liang & Cook, Wade D., 2017. "Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 77-86.
    22. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    23. Friedman, Lea & Sinuany-Stern, Zilla, 1997. "Scaling units via the canonical correlation analysis in the DEA context," European Journal of Operational Research, Elsevier, vol. 100(3), pages 629-637, August.
    24. Kamyar Hosseinzadeh Zoroufchi & Majid Azadi & Reza Farzipoor Saen, 2012. "Developing a new cross-efficiency model with undesirable outputs for supplier selection," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 12(4), pages 470-484.
    25. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    26. Huppes, Gjalt & Ishikawa, Masanobu, 2009. "Eco-efficiency guiding micro-level actions towards sustainability: Ten basic steps for analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1687-1700, April.
    27. Reza Kiani Mavi & Sajad Kazemi & Jay M. Jahangiri, 2013. "Developing Common Set of Weights with Considering Nondiscretionary Inputs and Using Ideal Point Method," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, December.
    28. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    29. HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber & AGRELL, Per J., 2013. "Allocating fixed resources and setting targets using a common-weights DEA approach," LIDAM Reprints CORE 2474, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    31. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    32. Mahdiloo, Mahdi & Saen, Reza Farzipoor & Lee, Ki-Hoon, 2015. "Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 279-289.
    33. Neus Sanjuan & Javier Ribal & Gabriela Clemente & Ma Loreto Fenollosa, 2011. "Measuring and Improving Eco‐efficiency Using Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 614-628, August.
    34. Ivan Haščič, 2012. "Environmental Innovation in Germany," OECD Environment Working Papers 53, OECD Publishing.
    35. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    36. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    37. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Measurement of Returns to Scale and Damages to Scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs?," European Journal of Operational Research, Elsevier, vol. 211(1), pages 76-89, May.
    38. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    39. Majid Azadi & Reza Farzipoor Saen, 2012. "Developing a new chance-constrained DEA model for suppliers selection in the presence of undesirable outputs," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 13(1), pages 44-66.
    40. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    3. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    6. Charles, Vincent & Kumar, Mukesh & Irene Kavitha, S., 2012. "Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 136(1), pages 194-206.
    7. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    8. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    9. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    10. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    11. Jie Wu & Xiang Lu & Dong Guo & Liang Liang, 2017. "Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1005-1021, July.
    12. Chen, Lei & Wang, Ying-Ming & Lai, Fujun, 2017. "Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments," European Journal of Operational Research, Elsevier, vol. 260(2), pages 655-664.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to Scale, Damages to Scale, Marginal Rate of Transformation and Rate of Substitution in DEA Environmental Assessment," Energy Economics, Elsevier, vol. 34(4), pages 905-917.
    14. Yigang Wei & Yan Li & Meiyu Wu & Yingbo Li, 2020. "Progressing sustainable development of “the Belt and Road countries”: Estimating environmental efficiency based on the Super‐slack‐based measure model," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 521-539, July.
    15. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    16. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    17. Jens J. Krüger & Moritz Tarach, 2022. "Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 867-898, April.
    18. Chiu, Yung-ho & Huang, Chin-wei & Ma, Chun-Mei, 2011. "Assessment of China transit and economic efficiencies in a modified value-chains DEA model," European Journal of Operational Research, Elsevier, vol. 209(2), pages 95-103, March.
    19. Li, Wanghong & Li, Zhepeng & Liang, Liang & Cook, Wade D., 2017. "Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 77-86.
    20. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:144:y:2019:i:c:p:553-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.