IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Carbon policy in a high-growth economy: The case of China

Listed author(s):
  • Bretschger, Lucas
  • Zhang, Lin

There is widespread concern that a stringent international climate agreement will not be reached because it would imply too high costs for fast growing economies. To test this hypothesis we develop a general equilibrium model with fully endogenous growth and estimate the policy cost for China. The framework includes disaggregated industrial and energy sectors, endogenous innovation, and sector-specific investments. We find that the governmental target of a 65 percent carbon intensity reduction until 2030 causes a welfare reduction of 0.5 percent for China, compared to the business-as-usual scenario. Costs of carbon policy for China under an internationally coordinated emission reduction amount to 4 percent of total welfare. We highlight that lower economic growth, faster energy technology development, and stronger induced innovation reduce welfare losses significantly. Increased urbanization raises the policy costs because urban households consume more energy and energy intensive goods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0928765516302883
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Resource and Energy Economics.

Volume (Year): 47 (2017)
Issue (Month): C ()
Pages: 1-19

as
in new window

Handle: RePEc:eee:resene:v:47:y:2017:i:c:p:1-19
DOI: 10.1016/j.reseneeco.2016.10.001
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505569

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
  2. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
  3. Binswanger, Hans P, 1974. "The Measurement of Technical Change Biases with Many Factors of Production," American Economic Review, American Economic Association, vol. 64(6), pages 964-976, December.
  4. Fleisher, Belton & Li, Haizheng & Zhao, Min Qiang, 2010. "Human capital, economic growth, and regional inequality in China," Journal of Development Economics, Elsevier, vol. 92(2), pages 215-231, July.
  5. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
  6. Xiaodong Zhu, 2012. "Understanding China's Growth: Past, Present, and Future," Journal of Economic Perspectives, American Economic Association, vol. 26(4), pages 103-124, Fall.
  7. Heggedal, Tom-Reiel & Jacobsen, Karl, 2011. "Timing of innovation policies when carbon emissions are restricted: An applied general equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 913-937.
  8. Fisher-Vanden, Karen & Ho, Mun S., 2007. "How do market reforms affect China's responsiveness to environmental policy?," Journal of Development Economics, Elsevier, vol. 82(1), pages 200-233, January.
  9. Zhang, Zhong Xiang, 1998. "Macroeconomic Effects of CO2 Emission Limits: A Computable General Equilibrium Analysis for China," Journal of Policy Modeling, Elsevier, vol. 20(2), pages 213-250, April.
  10. Dixit, Avinash K & Stiglitz, Joseph E, 1977. "Monopolistic Competition and Optimum Product Diversity," American Economic Review, American Economic Association, vol. 67(3), pages 297-308, June.
  11. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics and Osaka School of International Public Policy (OSIPP).
  12. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
  13. Vennemo, Haakon & Aunan, Kristin & Jianwu, He & Tao, Hu & Shantong, Li, 2009. "Benefits and costs to China of three different climate treaties," Resource and Energy Economics, Elsevier, vol. 31(3), pages 139-160, August.
  14. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
  15. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
  16. Chong-En Bai & Chang-Tai Hsieh & Yingyi Qian, 2006. "The Return to Capital in China," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 37(2), pages 61-102.
  17. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
  18. Chengjun Lu & Duanming Zhou, 2009. "Industrial energy substitution and a revised Allen elasticity in China," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(1), pages 110-124, March.
  19. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
  20. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
  21. Zheng Song & Kjetil Storesletten & Fabrizio Zilibotti, 2011. "Growing Like China," American Economic Review, American Economic Association, vol. 101(1), pages 196-233, February.
  22. John Whalley & Xiliang Zhao, 2010. "The Contribution of Human Capital to China's Economic Growth," NBER Working Papers 16592, National Bureau of Economic Research, Inc.
  23. Siqi Zheng & Matthew E. Kahn, 2013. "Understanding China's Urban Pollution Dynamics," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 731-772, September.
  24. Lau, Morten I. & Pahlke, Andreas & Rutherford, Thomas F., 2002. "Approximating infinite-horizon models in a complementarity format: A primer in dynamic general equilibrium analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(4), pages 577-609, April.
  25. Dowlatabadi, Hadi, 1998. "Sensitivity of climate change mitigation estimates to assumptions about technical change," Energy Economics, Elsevier, vol. 20(5-6), pages 473-493, December.
  26. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  27. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
  28. Kummel, Reiner & Henn, Julian & Lindenberger, Dietmar, 2002. "Capital, labor, energy and creativity: modeling innovation diffusion," Structural Change and Economic Dynamics, Elsevier, vol. 13(4), pages 415-433, December.
  29. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
  30. Hayami, Yujiro & Ruttan, V W, 1970. "Factor Prices and Technical Change in Agricultural Development: The United States and Japan, 1880-1960," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1115-1141, Sept.-Oct.
  31. Ethier, Wilfred J, 1982. "National and International Returns to Scale in the Modern Theory of International Trade," American Economic Review, American Economic Association, vol. 72(3), pages 389-405, June.
  32. Jorgenson, Dale W. & Goettle, Richard J. & Ho, Mun S. & Wilcoxen, Peter J., 2013. "Energy, the Environment and US Economic Growth," Handbook of Computable General Equilibrium Modeling, Elsevier.
  33. Bretschger, Lucas, 2013. "Climate policy and equity principles: fair burden sharing in a dynamic world," Environment and Development Economics, Cambridge University Press, vol. 18(05), pages 517-536, October.
  34. Fuad Hasanov, 2005. "Housing, Household Portfolio, and Intertemporal Elasticity of Substitution: Evidence from the Consumer Expenditure Survey," Macroeconomics 0510011, EconWPA.
  35. Donnelly, William A. & Johnson, Kyle & Tsigas, Marinos E. & Ingersoll, David, 2004. "Revised Armington Elasticities of Substitution for the USITC Model and the Concordance for Constructing a Consistent Set for the GTAP Model," Working Papers 15861, United States International Trade Commission, Office of Economics.
  36. van der Werf, Edwin, 2007. "Production Functions for Climate Policy Modeling: An Empirical Analysis," Kiel Working Papers 1316, Kiel Institute for the World Economy (IfW).
  37. Garbaccio, Richard F. & Ho, Mun S. & Jorgenson, Dale W., 1999. "Controlling carbon emissions in China," Environment and Development Economics, Cambridge University Press, vol. 4(04), pages 493-518, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:47:y:2017:i:c:p:1-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.