IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121007784.html
   My bibliography  Save this article

Internet plus and China industrial system's low-carbon development

Author

Listed:
  • Zhang, Wei
  • You, Jianmin
  • Lin, Weiwen

Abstract

The Internet Plus concept has deeply affected the development mode of the industrial system. To achieve a low-carbon transition, it is essential to examine how Internet Plus effects the industrial system's carbon intensity. In the existing literature, few studies focus on the influence of Internet usage on the low-carbon development of industries. Based on the Kaya identity, this study explores the relationship and interaction mechanism between Internet Plus, output structure, energy intensity, carbon density, and carbon intensity involved in industrial systems. Based on threshold and dynamic panel models, the Internet effect on carbon intensity, energy intensity, and carbon density of China's industrial system from 2000 to 2015 is studied empirically. Results indicate that the Internet encourages decreased carbon intensity, energy intensity, and carbon density of China's industrial system to various degrees. Specifically, regarding its contribution, the Internet's reducing effect on energy intensity is obvious, whereas that on carbon density is less notable. Further, different threshold effects of the Internet are exerted on carbon intensity, energy intensity, and carbon density.

Suggested Citation

  • Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007784
    DOI: 10.1016/j.rser.2021.111499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Akerman & Ingvil Gaarder & Magne Mogstad, 2015. "The Skill Complementarity of Broadband Internet," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1781-1824.
    2. Carol Corrado & Charles Hulten & Daniel Sichel, 2005. "Measuring Capital and Technology: An Expanded Framework," NBER Chapters, in: Measuring Capital in the New Economy, pages 11-46, National Bureau of Economic Research, Inc.
    3. Richard B. Freeman & M. Marit Rehavi, 2009. "Helping Workers Online and Offline: Innovations in Union and Worker Organization Using the Internet," NBER Chapters, in: Studies of Labor Market Intermediation, pages 273-306, National Bureau of Economic Research, Inc.
    4. Edward Wei-Te Hsieh & Rajeev K. Goel, 2019. "Internet use and labor productivity growth: recent evidence from the U.S. and other OECD countries," Netnomics, Springer, vol. 20(2), pages 195-210, December.
    5. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    7. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    8. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    9. Najarzadeh, Reza & Rahimzadeh, Farzad & Reed, Michael, 2014. "Does the Internet increase labor productivity? Evidence from a cross-country dynamic panel," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 986-993.
    10. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    11. Timothy Bresnahan & Pai-Ling Yin, 2017. "Adoption of New Information and Communications Technologies in the Workplace Today," Innovation Policy and the Economy, University of Chicago Press, vol. 17(1), pages 95-124.
    12. Charles R. Hulten, 2010. "Decoding Microsoft: Intangible Capital as a Source of Company Growth," NBER Working Papers 15799, National Bureau of Economic Research, Inc.
    13. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    14. Jonas Hjort & Jonas Poulsen, 2019. "The Arrival of Fast Internet and Employment in Africa," American Economic Review, American Economic Association, vol. 109(3), pages 1032-1079, March.
    15. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
    16. Jonathan Levin, 2011. "The Economics of Internet Markets," Discussion Papers 10-018, Stanford Institute for Economic Policy Research.
    17. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    18. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    19. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    20. Lars-Hendrik Roller & Leonard Waverman, 2001. "Telecommunications Infrastructure and Economic Development: A Simultaneous Approach," American Economic Review, American Economic Association, vol. 91(4), pages 909-923, September.
    21. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    22. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    23. Ali, Ghaffar & Yan, Ningyu & Hussain, Jafar & Xu, Lilai & Huang, Yunfeng & Xu, Su & Cui, Shenghui, 2019. "Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 230-238.
    24. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    25. Cao, Jing & Karplus, Valerie J., 2014. "Firm-level determinants of energy and carbon intensity in China," Energy Policy, Elsevier, vol. 75(C), pages 167-178.
    26. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    27. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    28. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
    29. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    30. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    31. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    32. Charles R. Hulten & Xiaohui Hao, 2008. "What is a Company Really Worth? Intangible Capital and the "Market to Book Value" Puzzle," NBER Working Papers 14548, National Bureau of Economic Research, Inc.
    33. Cai, Shun & Chen, Xi & Bose, Indranil, 2013. "Exploring the role of IT for environmental sustainability in China: An empirical analysis," International Journal of Production Economics, Elsevier, vol. 146(2), pages 491-500.
    34. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    35. Li, Xiaoyan & Xu, Hengzhou, 2020. "The Energy-conservation and Emission-reduction Paths of Industrial sectors: Evidence from Chinas 35 industrial sectors," Energy Economics, Elsevier, vol. 86(C).
    36. Rangkakulnuwat , Poomthan & Dunyo, Samuel Kwesi, 2018. "The Impact of Internet on Economic Growth in Africa," Asian Journal of Applied Economics/ Applied Economics Journal, Kasetsart University, Faculty of Economics, Center for Applied Economic Research, vol. 25(2), pages 19-33, December.
    37. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    38. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    39. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    40. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    41. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    42. Vu, Khuong M., 2019. "The internet-growth link: An examination of studies with conflicting results and new evidence on the network effect," Telecommunications Policy, Elsevier, vol. 43(5), pages 474-483.
    43. Kiel, Daniel & Arnold, Christian & Voigt, Kai-Ingo, 2017. "The influence of the Industrial Internet of Things on business models of established manufacturing companies – A business level perspective," Technovation, Elsevier, vol. 68(C), pages 4-19.
    44. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    45. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ackermann, Klaus & Awaworyi Churchill, Sefa & Smyth, Russell, 2023. "High-speed internet access and energy poverty," Energy Economics, Elsevier, vol. 127(PB).
    2. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Luo, Yusen & Lu, Zhengnan & Wu, Chao, 2023. "Can internet development accelerate the green innovation efficiency convergence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Geng Peng & Yixuan Tang & Kaiyou Tian, 2023. "Understanding the Nonlinear Impact of Information and Communication Technology on Carbon Emissions in the Logistics Industry of China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Ke-Liang Wang & Ting-Ting Sun & Ru-Yu Xu, 2023. "The impact of artificial intelligence on total factor productivity: empirical evidence from China’s manufacturing enterprises," Economic Change and Restructuring, Springer, vol. 56(2), pages 1113-1146, April.
    6. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    7. Ding, Jian & Liu, Baoliu & Shao, Xuefeng, 2022. "Spatial effects of industrial synergistic agglomeration and regional green development efficiency: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    8. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    9. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    10. Kunkel, S. & Neuhäusler, P. & Matthess, M. & Dachrodt, M.F., 2023. "Industry 4.0 and energy in manufacturing sectors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    2. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    3. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    4. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    5. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    6. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    7. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    8. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    9. Ibrahim D. Raheem & Aviral K. Tiwari & Daniel Balsalobre-lorente, 2019. "The Role of ICT and Financial Development on CO2 Emissions and Economic Growth," Working Papers of the African Governance and Development Institute. 19/058, African Governance and Development Institute..
    10. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    11. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    12. Ke-Liang Wang & Rui-Rui Zhu & Yun-He Cheng, 2022. "Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China," Energies, MDPI, vol. 15(7), pages 1-21, April.
    13. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    14. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    15. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    16. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    17. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    18. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    19. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    20. Magazzino, Cosimo & Mele, Marco & Morelli, Giovanna & Schneider, Nicolas, 2021. "The nexus between information technology and environmental pollution: Application of a new machine learning algorithm to OECD countries," Utilities Policy, Elsevier, vol. 72(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.