IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v62y2017icp236-246.html
   My bibliography  Save this article

Mitigating the impact of errors in travel time reporting on mode choice modelling

Author

Listed:
  • Varotto, Silvia F.
  • Glerum, Aurélie
  • Stathopoulos, Amanda
  • Bierlaire, Michel
  • Longo, Giovanni

Abstract

Travel time is a major component in understanding travel demand. However, the quantification of demand and forecasting hinges on understanding how travel time is perceived and reported. Travel time reporting is typically subject to errors and this paper focuses on the mitigation of their impact on choice models. The aim is to explain the origin of these errors by including elements of travel behaviour (e.g., activities during the trip), which have been shown to significantly affect mode choices and commuting satisfaction. Based on responses from a revealed preferences survey, we estimate a mode choice model that treats travel time as a latent variable and incorporates different sources of data along with information on travel activities. Employing these multiple – sometimes incongruent – sources of information in the choice model appears to be beneficial. Results from comparing a logit model assuming error-free inputs and the integrated hybrid model revealed significant impacts on the generated policy scenarios. The model results also contributed to identifying the main travel activity features that affect travel time reporting, providing indications that can assist in understanding and mitigating the impact of imprecise measurements.

Suggested Citation

  • Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
  • Handle: RePEc:eee:jotrge:v:62:y:2017:i:c:p:236-246
    DOI: 10.1016/j.jtrangeo.2017.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316304161
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghosh, Arindam, 2001. "Valuing Time and Reliability: Commuters' Mode Choice from a Real Time Congestion Pricing Experiment," University of California Transportation Center, Working Papers qt9fz0z9kq, University of California Transportation Center.
    2. Steimetz, Seiji S.C. & Brownstone, David, 2005. "Estimating commuters' "value of time" with noisy data: a multiple imputation approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 865-889, December.
    3. Páez, Antonio & Whalen, Kate, 2010. "Enjoyment of commute: A comparison of different transportation modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 537-549, August.
    4. Lothlorien Redmond & Patricia Mokhtarian, 2001. "The positive utility of the commute: modeling ideal commute time and relative desired commute amount," Transportation, Springer, vol. 28(2), pages 179-205, May.
    5. Eboli, Laura & Mazzulla, Gabriella, 2011. "A methodology for evaluating transit service quality based on subjective and objective measures from the passenger's point of view," Transport Policy, Elsevier, vol. 18(1), pages 172-181, January.
    6. Brownstone, David & Small, Kenneth A., 2005. "Valuing time and reliability: assessing the evidence from road pricing demonstrations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 279-293, May.
    7. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    8. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    9. Gerard de Jong & Hugh Gunn, 2001. "Recent Evidence on Car Cost and Time Elasticities of Travel Demand in Europe," Journal of Transport Economics and Policy, University of Bath, vol. 35(2), pages 137-160, May.
    10. Díaz, Federico & Cantillo, Víctor & Arellana, Julian & Ortúzar, Juan de Dios, 2015. "Accounting for stochastic variables in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 222-237.
    11. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Verhoef, Erik T., 2014. "Over-reporting vs. overreacting: Commuters’ perceptions of travel times," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 476-494.
    12. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    13. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    14. Sanko, Nobuhiro & Hess, Stephane & Dumont, Jeffrey & Daly, Andrew, 2014. "Contrasting imputation with a latent variable approach to dealing with missing income in choice models," Journal of choice modelling, Elsevier, vol. 12(C), pages 47-57.
    15. Hess, Stephane & Stathopoulos, Amanda, 2013. "A mixed random utility — Random regret model linking the choice of decision rule to latent character traits," Journal of choice modelling, Elsevier, vol. 9(C), pages 27-38.
    16. Catalano, Mario & Lo Casto, Barbara & Migliore, Marco, 2008. "Car sharing demand estimation and urban transport demand modelling using stated preference techniques," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 40, pages 33-50.
    17. Milakis, Dimitris & Cervero, Robert & van Wee, Bert & Maat, Kees, 2015. "Do people consider an acceptable travel time? Evidence from Berkeley, CA," Journal of Transport Geography, Elsevier, vol. 44(C), pages 76-86.
    18. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    19. Ettema, Dick & Friman, Margareta & Gärling, Tommy & Olsson, Lars E. & Fujii, Satoshi, 2012. "How in-vehicle activities affect work commuters’ satisfaction with public transport," Journal of Transport Geography, Elsevier, vol. 24(C), pages 215-222.
    20. Joachim Scheiner & Christian Holz-Rau, 2007. "Travel mode choice: affected by objective or subjective determinants?," Transportation, Springer, vol. 34(4), pages 487-511, July.
    21. Bhat, Chandra R., 1994. "Imputing a continuous income variable from grouped and missing income observations," Economics Letters, Elsevier, vol. 46(4), pages 311-319, December.
    22. Hornik, Jacob, 1992. "Time estimation and orientation mediated by transient mood," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 21(3), pages 209-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    2. Eivind Tveter, 2023. "The value of travel time: a revealed preferences approach using exogenous variation in travel costs and automatic traffic count data," Transportation, Springer, vol. 50(6), pages 2273-2297, December.
    3. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    4. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    5. Einat Tenenboim & Nira Munichor & Yoram Shiftan, 2023. "Justifying toll payment with biased travel time estimates: Behavioral findings and route choice modeling," Transportation, Springer, vol. 50(2), pages 477-511, April.
    6. Gao, Ya & Pan, Haixiao & Xie, Zhilin & Habib, Khandker Nurul, 2023. "Understanding patients heterogeneity in healthcare travel and hospital choice - A latent class analysis with covariates," Journal of Transport Geography, Elsevier, vol. 110(C).
    7. Yan, Yingying & Zhong, Shiquan & Tian, Junfang & Jia, Ning, 2022. "An empirical study on consumer automobile purchase intentions influenced by the COVID-19 outbreak," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    9. Moeinaddini, Amin & Habibian, Meeghat, 2023. "Transportation demand management policy efficiency: An attempt to address the effectiveness and acceptability of policy packages," Transport Policy, Elsevier, vol. 141(C), pages 317-330.
    10. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    11. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    12. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    13. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.
    14. Maaya, Leonard & Meulders, Michel & Vandebroek, Martina, 2021. "Joint analysis of preferences and drop out data in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 41(C).
    15. Fu, Jianhua & Zhang, Yongqing, 2020. "Valuation of travel time reliability: Considering the traveler's adaptive expectation with an indifference band on daily trip duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 337-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    2. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    3. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Krčál, Ondřej & Peer, Stefanie & Staněk, Rostislav & Karlínová, Bára, 2019. "Real consequences matter: Why hypothetical biases in the valuation of time persist even in controlled lab experiments," Economics of Transportation, Elsevier, vol. 20(C).
    5. Krčál, Ondřej & Peer, Stefanie & Staněk, Rostislav, 2021. "Can time-inconsistent preferences explain hypothetical biases?," Economics of Transportation, Elsevier, vol. 25(C).
    6. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    7. Dixit, Vinayak & Jian, Sisi & Hassan, Asif & Robson, Edward, 2019. "Eliciting perceptions of travel time risk and exploring its impact on value of time," Transport Policy, Elsevier, vol. 82(C), pages 36-45.
    8. Steimetz, Seiji S.C., 2008. "Defensive driving and the external costs of accidents and travel delays," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 703-724, November.
    9. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    10. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    11. Yin-Yen Tseng, 2004. "A meta-analysis of travel time reliability," ERSA conference papers ersa04p415, European Regional Science Association.
    12. Marley, A.A.J. & Swait, J., 2017. "Goal-based models for discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 72-88.
    13. Le, Huyen T.K. & Buehler, Ralph & Fan, Yingling & Hankey, Steve, 2020. "Expanding the positive utility of travel through weeklong tracking: Within-person and multi-environment variability of ideal travel time," Journal of Transport Geography, Elsevier, vol. 84(C).
    14. Seiji S. C. Steimetz, 2009. "White‐Knuckle Externalities," Economic Inquiry, Western Economic Association International, vol. 47(2), pages 304-316, April.
    15. Janson, Michael & Levinson, David, 2014. "HOT or not," Research in Transportation Economics, Elsevier, vol. 44(C), pages 21-32.
    16. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    17. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    18. Jiankun Yang & Min He & Mingwei He, 2022. "Exploring the Group Difference in the Nonlinear Relationship between Commuting Satisfaction and Commuting Time," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    19. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    20. Ye, Runing & De Vos, Jonas & Ma, Liang, 2020. "Analysing the association of dissonance between actual and ideal commute time and commute satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 47-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:62:y:2017:i:c:p:236-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.