IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v170y2023icp169-193.html
   My bibliography  Save this article

Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models

Author

Listed:
  • Nirmale, Sangram Krishna
  • Pinjari, Abdul Rawoof

Abstract

This paper presents a mixed multinomial logit-based discrete choice modelling framework to accommodate decision-makers’ errors in perceiving choice environment variables that do not vary across choice alternatives. An analysis is undertaken to evaluate two different ways of specifying errors in the choice environment variables in discrete choice models – (a) the additive specification and (b) the multiplicative specification. Between these two approaches, the multiplicative error specification is consistent with psychophysical theories of human perception of physical quantities in that the variability in perception tends to be greater for quantities of greater magnitude. Further, it is shown that models with an additive error specification run into parameter (un)identifiability problems if the analyst attempts to accommodate errors in several variables. In contrast, models with multiplicative errors in variables allow separate identification of stochasticity in as many variables as needed, as long as those variables have a significant influence on the choice outcome.

Suggested Citation

  • Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
  • Handle: RePEc:eee:transb:v:170:y:2023:i:c:p:169-193
    DOI: 10.1016/j.trb.2023.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Bartels & Denzil Fiebig & Arthur Soest, 2006. "Consumers and experts: an econometric analysis of the demand for water heaters," Empirical Economics, Springer, vol. 31(2), pages 369-391, June.
    2. Steimetz, Seiji S.C. & Brownstone, David, 2005. "Estimating commuters' "value of time" with noisy data: a multiple imputation approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 865-889, December.
    3. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    4. Hess, Stephane & Train, Kenneth, 2017. "Correlation and scale in mixed logit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 1-8.
    5. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    6. Kao, Chihwa & Schnell, John F., 1987. "Errors in variables in the multinomial response model," Economics Letters, Elsevier, vol. 25(3), pages 249-254.
    7. Yatchew, Adonis & Griliches, Zvi, 1985. "Specification Error in Probit Models," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 134-139, February.
    8. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    9. Hess, Stephane & Daly, Andrew & Dekker, Thijs & Cabral, Manuel Ojeda & Batley, Richard, 2017. "A framework for capturing heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time research," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 126-149.
    10. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    11. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    12. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    14. Díaz, Federico & Cantillo, Víctor & Arellana, Julian & Ortúzar, Juan de Dios, 2015. "Accounting for stochastic variables in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 222-237.
    15. Joel L. Horowitz, 1983. "Statistical Comparison of Non-Nested Probabilistic Discrete Choice Models," Transportation Science, INFORMS, vol. 17(3), pages 319-350, August.
    16. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    17. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    18. Sanko, Nobuhiro & Hess, Stephane & Dumont, Jeffrey & Daly, Andrew, 2014. "Contrasting imputation with a latent variable approach to dealing with missing income in choice models," Journal of choice modelling, Elsevier, vol. 12(C), pages 47-57.
    19. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    20. Bhatta, Bharat P. & Larsen, Odd I., 2011. "Errors in variables in multinomial choice modeling: A simulation study applied to a multinomial logit model of travel mode choice," Transport Policy, Elsevier, vol. 18(2), pages 326-335, March.
    21. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    22. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    23. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    24. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    25. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    26. Hamdar, Samer H. & Mahmassani, Hani S. & Treiber, Martin, 2015. "From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 32-53.
    27. Daniel Hellerstein, 2005. "Modeling Discrete Choice with Uncertain Data: An Augmented MNL Estimator," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 77-84.
    28. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    29. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    4. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    5. Díaz, Federico & Cantillo, Víctor & Arellana, Julian & Ortúzar, Juan de Dios, 2015. "Accounting for stochastic variables in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 222-237.
    6. Duncan, Lawrence Christopher & Watling, David Paul & Connors, Richard Dominic & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2020. "Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 1-40.
    7. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    8. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    9. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    10. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    11. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    12. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    13. Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
    14. Eivind Tveter, 2023. "The value of travel time: a revealed preferences approach using exogenous variation in travel costs and automatic traffic count data," Transportation, Springer, vol. 50(6), pages 2273-2297, December.
    15. Maaya, Leonard & Meulders, Michel & Vandebroek, Martina, 2021. "Joint analysis of preferences and drop out data in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 41(C).
    16. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    17. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    18. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    19. Lu, Hui & Hess, Stephane & Daly, Andrew & Rohr, Charlene & Patruni, Bhanu & Vuk, Goran, 2021. "Using state-of-the-art models in applied work: Travellers willingness to pay for a toll tunnel in Copenhagen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 37-52.
    20. Friederike Paetz & Winfried J. Steiner, 2017. "The benefits of incorporating utility dependencies in finite mixture probit models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 793-819, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:170:y:2023:i:c:p:169-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.