IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v54y2025ics1755534524000630.html
   My bibliography  Save this article

New misspecification tests for multinomial logit models

Author

Listed:
  • Fok, Dennis
  • Paap, Richard

Abstract

Multinomial Logit [MNL] models are misspecified when the Independence of Irrelevant Assumption [IIA] does not hold. In this paper we compare existing tests for IIA with two newly proposed tests. Both new tests use that, when MNL is the true model, preferences across pairs of alternatives can be described by independent binary logit models. The first test compares Composite Likelihood parameter estimates based on pairs of alternatives with standard Maximum Likelihood estimates using a Hausman (1978) test. The second is a test for overidentification in a GMM framework using more pairs than necessary. A detailed Monte Carlo study shows that the GMM test is in general superior with respect to the performance under the null and under the alternative hypothesis. An empirical illustration demonstrates the practical usefulness of the tests.

Suggested Citation

  • Fok, Dennis & Paap, Richard, 2025. "New misspecification tests for multinomial logit models," Journal of choice modelling, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:eejocm:v:54:y:2025:i:c:s1755534524000630
    DOI: 10.1016/j.jocm.2024.100531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534524000630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Discrete choices; Multinomial logit; IIA; Hausman test; Composite likelihood;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:54:y:2025:i:c:s1755534524000630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.