IDEAS home Printed from https://ideas.repec.org/p/ags/uconnr/149970.html
   My bibliography  Save this paper

A Structured Covariance Probit Demand Model

Author

Listed:
  • Cohen, Michael

Abstract

This paper introduces a heterogeneous agent discrete choice probit demand model with a structural interpretation of product choice covariance designed to overcome two hurdles in discrete choice demand modeling. One hurdle is the curse of dimensionality implicit in covariance probit demand models and the other hurdle is the independence of irrelevant alternatives (IIA) implicit in logit demand models. The structured covariance probit exploits the fact that choice models rely on utility differences to achieve identification. The utility difference structure implied by the additive random utility model is imposed on the covariance matrix and requires just one parameter in addition to those specified in the deterministic component of consumer utility. As an additional advantage the structured covariance probit is a better out-of-sample predictor because it allows covariance to change according to characteristics of the market. To estimate the model the paper develops a Bayesian estimation approach. The model also incorporates a Dirichlet process prior over normally distributed consumer segment clusters to flexibly model demand heterogeneity. The new model is evaluated relative to the widely used heterogeneous consumer logit demand model. Sampling experiments confirm that the model performs well under misspecification. An empirical analysis demonstrates that the new probit model captures realistic unrestricted switching behavior whereas its logit counterpart exhibits restrictiveness inconsistent with the utility theory on which the model is based.

Suggested Citation

  • Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
  • Handle: RePEc:ags:uconnr:149970
    DOI: 10.22004/ag.econ.149970
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/149970/files/rr123.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.149970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    3. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    5. Allenby, Greg M & Rossi, Peter E, 1991. "There Is No Aggregate Bias: Why Macro Logit Models Work," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 1-14, January.
    6. Amos Tversky, 2003. "Preference, Belief, and Similarity: Selected Writings," MIT Press Books, The MIT Press, edition 1, volume 1, number 026270093x edited by Eldar Shafir, April.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
    9. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    10. Charles F. Hofacker, 1990. "Note---Derivation of Covariance Probit Elasticities," Management Science, INFORMS, vol. 36(4), pages 500-504, April.
    11. Greg M. Allenby, 1989. "A Unified Approach to Identifying, Estimating and Testing Demand Structures with Aggregate Scanner Data," Marketing Science, INFORMS, vol. 8(3), pages 265-280.
    12. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    13. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    14. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    15. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    16. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    4. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    5. Friederike Paetz & Winfried J. Steiner, 2017. "The benefits of incorporating utility dependencies in finite mixture probit models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 793-819, July.
    6. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    7. Joachim Grammig & Reinhard Hujer & Michael Scheidler, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486, May.
    8. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
    9. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    10. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    11. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
    12. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    13. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    14. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    16. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    17. David Roodman, 2009. "Estimating Fully Observed Recursive Mixed-Process Models with cmp," Working Papers 168, Center for Global Development.
    18. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    19. Abay, Kibrom A. & Berhane, Guush & Taffesse, Alemayehu Seyoum & Koru, Bethlehem & Abay, Kibrewossen, 2016. "Understanding farmers’ technology adoption decisions: Input complementarity and heterogeneity:," ESSP working papers 82, International Food Policy Research Institute (IFPRI).
    20. Darla Hatton MacDonald & Mark Morrison & Mary Barnes, 2010. "Willingness to Pay and Willingness to Accept Compensation for Changes in Urban Water Customer Service Standards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3145-3158, September.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uconnr:149970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fmuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.