IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/116745.html

New Misspecification Tests for Multinomial Logit Models

Author

Listed:
  • Fok, D.
  • Paap, R.

Abstract

Misspecification tests for Multinomial Logit [MNL] models are known to have low power or large size distortion. We propose two new misspecification tests. Both use that preferences across binary pairs of alternatives can be described by independent binary logit models when MNL is true. The first test compares Composite Likelihood parameter estimates based on choice pairs with standard Maximum Likelihood estimates using a Hausman (1978) test. The second tests for overidentification in a GMM framework using more pairs than necessary. A Monte Carlo study shows that the GMM test is in general superior with respect to power and has correct size

Suggested Citation

  • Fok, D. & Paap, R., 2019. "New Misspecification Tests for Multinomial Logit Models," Econometric Institute Research Papers EI2019-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:116745
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/116745/ei2019-24.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Jerry Hausman, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    5. Small, Kenneth A & Hsiao, Cheng, 1985. "Multinomial Logit Specification Tests," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(3), pages 619-627, October.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    7. Ruud, Paul A, 1983. "Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models," Econometrica, Econometric Society, vol. 51(1), pages 225-228, January.
    8. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    9. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    10. Ray, Paramesh, 1973. "Independence of Irrelevant Alternatives," Econometrica, Econometric Society, vol. 41(5), pages 987-991, September.
    11. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    12. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    13. Simon Cheng & J. Scott Long, 2007. "Testing for IIA in the Multinomial Logit Model," Sociological Methods & Research, , vol. 35(4), pages 583-600, May.
    14. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    15. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    16. Fry, Tim R. L. & Harris, Mark N., 1996. "A Monte Carlo study of tests for the independence of irrelevant alternatives property," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 19-30, February.
    17. Koen Bel & Dennis Fok & Richard Paap, 2018. "Parameter estimation in multivariate logit models with many binary choices," Econometric Reviews, Taylor & Francis Journals, vol. 37(5), pages 534-550, May.
    18. Bjorn, Paul A. & Vuong, Quang H., 1985. "A note on the independence of irrelevant alternatives in probabilistic choice models," Economics Letters, Elsevier, vol. 18(4), pages 305-307.
    19. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    20. Theil, Henri, 1969. "A Multinomial Extension of the Linear Logit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 251-259, October.
    21. Mokhtarian, Patricia L., 2016. "Presenting the Independence of Irrelevant Alternatives property in a first course on logit modeling," Journal of choice modelling, Elsevier, vol. 21(C), pages 25-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Vijverberg, Wim P., 2011. "Testing for IIA with the Hausman-McFadden Test," IZA Discussion Papers 5826, Institute of Labor Economics (IZA).
    4. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Simon Cheng & J. Scott Long, 2007. "Testing for IIA in the Multinomial Logit Model," Sociological Methods & Research, , vol. 35(4), pages 583-600, May.
    8. repec:lic:licosd:27411 is not listed on IDEAS
    9. Arjun Seshadri & Johan Ugander, 2020. "Fundamental Limits of Testing the Independence of Irrelevant Alternatives in Discrete Choice," Papers 2001.07042, arXiv.org.
    10. Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
    11. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    12. Bartolj, Tjaša & Polanec, Sašo, 2012. "College major choice and ability: Why is general ability not enough?," Economics of Education Review, Elsevier, vol. 31(6), pages 996-1016.
    13. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    14. Friederike Paetz & Winfried J. Steiner, 2017. "The benefits of incorporating utility dependencies in finite mixture probit models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 793-819, July.
    15. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    16. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    17. Cécile Détang‐Dessendre & Florence Goffette‐Nagot & Virginie Piguet, 2008. "Life Cycle And Migration To Urban And Rural Areas: Estimation Of A Mixed Logit Model On French Data," Journal of Regional Science, Wiley Blackwell, vol. 48(4), pages 789-824, October.
    18. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    19. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    20. Darla Hatton MacDonald & Mark Morrison & Mary Barnes, 2010. "Willingness to Pay and Willingness to Accept Compensation for Changes in Urban Water Customer Service Standards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3145-3158, September.
    21. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:116745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.