IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Errors in variables in multinomial choice modeling: A simulation study applied to a multinomial logit model of travel mode choice

  • Bhatta, Bharat P.
  • Larsen, Odd I.
Registered author(s):

    Modeling travel demand is a vital part of transportation planning and management. Level of service (LOS) attributes representing the performance of transportation system and characteristics of travelers including their households are major factors determining the travel demand. Information on actual choice and characteristics of travelers is obtained from a travel survey at an individual level. Since accurate measurement of LOS attributes such as travel time and cost components for different travel modes at an individual level is critical, they are normally obtained from network models. The network-based LOS attributes introduce measurement errors to individual trips thereby causing errors in variables problem in a disaggregate model of travel demand. This paper investigates the possible structure and magnitude of biases introduced to the coefficients of a multinomial logit model of travel mode choice due to random measurement errors in two variables, namely, access/egress time for public transport and walking and cycling distance to work. A model was set up that satisfies the standard assumptions of a multinomial logit model. This model was estimated on a data set from a travel survey on the assumption of correctly measured variables. Subsequently random measurement errors were introduced and the mean values of the parameters from 200 estimations were presented and compared with the original estimates. The key finding in this paper is that errors in variables result in biased parameter estimates of a multinomial logit model and consequently leading to poor policy decisions if the models having biased parameters are applied in policy and planning purposes. In addition, the paper discusses some potential remedial measures and identifies research topics that deserve a detailed investigation to overcome the problem. The paper therefore significantly contributes to bridge the gap between theory and practice in transport.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VGG-519D4NN-2/2/cd0176e5f83218c9ac6e11b161e0be09
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transport Policy.

    Volume (Year): 18 (2011)
    Issue (Month): 2 (March)
    Pages: 326-335

    as
    in new window

    Handle: RePEc:eee:trapol:v:18:y:2011:i:2:p:326-335
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=30473&ref=30473_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    2. Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
    3. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
    4. Kao, Chihwa & Schnell, John F., 1987. "Errors in variables in the multinomial response model," Economics Letters, Elsevier, vol. 25(3), pages 249-254.
    5. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457 Elsevier.
    6. Hu, Yingyao, 2006. "Bounding parameters in a linear regression model with a mismeasured regressor using additional information," Journal of Econometrics, Elsevier, vol. 133(1), pages 51-70, July.
    7. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    8. Kang-tsung Chang & Zaher Khatib & Yanmei Ou, 2002. "Effects of zoning structure and network detail on traffic demand modeling," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 29(1), pages 37-52, January.
    9. Yatchew, Adonis & Griliches, Zvi, 1985. "Specification Error in Probit Models," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 134-39, February.
    10. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:18:y:2011:i:2:p:326-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.