IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v125y2025ics096669232500105x.html
   My bibliography  Save this article

Understanding rail users' mode choice behavior for first and last mile travel

Author

Listed:
  • Lieu, Seung Jae
  • Akar, Gulsah

Abstract

The first and last mile (FLM) travel is a challenge that affects urban rail usage and in some cases increases dependence on personal vehicles for accessing transit nodes. While previous studies have explored FLM travel, there is limited research that thoroughly examines the influence of street-level built environment factors on mode choice behavior and how these factors affect groups based on car dependency. This study analyzes rail users' mode choice behavior in Atlanta, focusing on socio-demographic traits, built environment, and trip characteristics. The study explores the varying impacts of these factors on two distinct groups: those with and without access to private cars by conducting segmented models. This nuanced approach helps explain why one may opt for walking or taking transit, even though they may have access to a car. Pooled model analyses confirm the significance of these factors in determining mode choice, with parking availability surprisingly not influencing car use. Segmented model results reveal that bus-specific factors, such as service frequency, number of transfers, fare discounts, and bus stop accessibility, significantly influence bus usage for both FLM travel, notably even among individuals with access to cars. Additionally, the greenery and building-to-street ratio along streets enhance walking appeal. By improving these aspects, urban planners and policymakers can effectively encourage the use of sustainable FLM travel options, thereby enhancing urban mobility and reducing the reliance on private vehicles.

Suggested Citation

  • Lieu, Seung Jae & Akar, Gulsah, 2025. "Understanding rail users' mode choice behavior for first and last mile travel," Journal of Transport Geography, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:jotrge:v:125:y:2025:i:c:s096669232500105x
    DOI: 10.1016/j.jtrangeo.2025.104214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232500105X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    2. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    3. Kim, Sungyop & Ulfarsson, Gudmundur F. & Todd Hennessy, J., 2007. "Analysis of light rail rider travel behavior: Impacts of individual, built environment, and crime characteristics on transit access," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 511-522, July.
    4. Basheer, Muhammad Aamir & van der Waerden, Peter & Kochan, Bruno & Bellemans, Tom & Raheel Shah, Syyed Adnan, 2019. "Multi-stage trips: An exploration of factors affecting mode combination choice of travelers in England," Transport Policy, Elsevier, vol. 81(C), pages 95-105.
    5. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    6. Lieu, Seung Jae & Guhathakurta, Subhrajit, 2025. "Exploring pedestrian route choice preferences by demographic groups: Analysis of street attributes in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
    7. Lu, Ying & Prato, Carlo G. & Corcoran, Jonathan, 2021. "Disentangling the behavioural side of the first and last mile problem: the role of modality style and the built environment," Journal of Transport Geography, Elsevier, vol. 91(C).
    8. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    9. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    10. Rhonda Daniels & Corinne Mulley, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    12. Lu, Yi & Sarkar, Chinmoy & Xiao, Yang, 2018. "The effect of street-level greenery on walking behavior: Evidence from Hong Kong," Social Science & Medicine, Elsevier, vol. 208(C), pages 41-49.
    13. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.
    14. Zuo, Ting & Wei, Heng, 2019. "Bikeway prioritization to increase bicycle network connectivity and bicycle-transit connection: A multi-criteria decision analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 52-71.
    15. Basu, Rounaq & Sevtsuk, Andres, 2022. "How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 1-19.
    16. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    17. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    18. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    19. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sogbe, Eugene & Susilawati, Susilawati & Currie, Graham & Tan, Chee Pin, 2025. "Exploring factors influencing first-mile and last-mile connections to public transport from car users' perspective: Evidence from Greater Accra, Ghana," Journal of Transport Geography, Elsevier, vol. 126(C).
    2. Sogbe, Eugene & Susilawati, Susilawati & Pin, Tan Chee, 2024. "First-mile and last-mile externalities: Perspectives from a developing country," Journal of Transport Geography, Elsevier, vol. 121(C).
    3. Saiyad, Gulnazbanu & Srivastava, Minal & Rathwa, Dipak, 2022. "Exploring determinants of feeder mode choice behavior using Artificial Neural Network: Evidences from Delhi metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    5. Kanchanaroek, Yingluk & Termansen, Mette & Quinn, Claire, 2013. "Property rights regimes in complex fishery management systems: A choice experiment application," Ecological Economics, Elsevier, vol. 93(C), pages 363-373.
    6. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    7. Partha Deb & Chenghui Li & Pravin K. Trivedi & David M. Zimmer, 2006. "The effect of managed care on use of health care services: results from two contemporaneous household surveys," Health Economics, John Wiley & Sons, Ltd., vol. 15(7), pages 743-760, July.
    8. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    9. Deka, Devajyoti, 2012. "The impacts of non-resident parking restrictions at commuter rail stations," Journal of Transport Geography, Elsevier, vol. 24(C), pages 451-461.
    10. Johanna Lena Dahlhausen & Cam Rungie & Jutta Roosen, 2018. "Value of labeling credence attributes—common structures and individual preferences," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 741-751, November.
    11. Qian Wu & Monique Vanerum & Anouk Agten & Andrés Christiansen & Frank Vandenabeele & Jean-Michel Rigo & Rianne Janssen, 2021. "Certainty-Based Marking on Multiple-Choice Items: Psychometrics Meets Decision Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 518-543, June.
    12. Hasnine, Md Sami & Graovac, Ana & Camargo, Felipe & Habib, Khandker Nurul, 2019. "A random utility maximization (RUM) based measure of accessibility to transit: Accurate capturing of the first-mile issue in urban transit," Journal of Transport Geography, Elsevier, vol. 74(C), pages 313-320.
    13. Kim, Do-hun & Sjølie, Hanne K. & Aguilar, Francisco X., 2024. "Psychological distances to climate change and public preferences for biodiversity-augmenting attributes in family-owned production forests," Forest Policy and Economics, Elsevier, vol. 163(C).
    14. Hiroki Wakamatsu & Yuki Maruyama, 2024. "Consumer Preference for Fisheries Improvement Project: Case of Bigeye Tuna in Japan," Sustainability, MDPI, vol. 16(6), pages 1-11, March.
    15. Duncan, Michael & Christensen, Robert K., 2013. "An analysis of park-and-ride provision at light rail stations across the US," Transport Policy, Elsevier, vol. 25(C), pages 148-157.
    16. Lalit Jain & Zhaoqi Li & Erfan Loghmani & Blake Mason & Hema Yoganarasimhan, 2024. "Effective Adaptive Exploration of Prices and Promotions in Choice-Based Demand Models," Marketing Science, INFORMS, vol. 43(5), pages 1002-1030, September.
    17. Daniel F. Villarraga & Ricardo A. Daziano, 2025. "Designing Graph Convolutional Neural Networks for Discrete Choice with Network Effects," Papers 2503.09786, arXiv.org.
    18. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    20. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:125:y:2025:i:c:s096669232500105x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.