IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v113y2018icp88-100.html
   My bibliography  Save this article

Transit accessibility: A new definition of transit connectors

Author

Listed:
  • Manout, Ouassim
  • Bonnel, Patrick
  • Bouzouina, Louafi

Abstract

Transit accessibility is a key determinant in explaining transit use and promoting transit policies. The improvement of transit access conditions is deemed to improve the overall quality of the transit service, the user experience, and ultimately, the transit ridership. In transport modeling, however, transit accessibility is still modeled in a very crude manner based on centroid connectors. This approach does not render actual walking conditions as encountered by transit users. The current paper proposes a new definition of transit access for transport modeling purposes. In contrast to current practice which is based on centroid connectors, this new definition uses high resolution spatial data to model actual access and egress conditions to and from transit facilities. The new approach relies on the spatial distribution of potential transit users and their probability of using transit facilities. Two automatic methods have been developed: selection of accessible transit facilities on the basis of their proximity and computation of the length of connectors using distance decay functions.

Suggested Citation

  • Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
  • Handle: RePEc:eee:transa:v:113:y:2018:i:c:p:88-100
    DOI: 10.1016/j.tra.2018.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417305268
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    2. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    3. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    4. Patrick Bonnel, 2004. "Prévoir la demande de transport," Post-Print halshs-00077292, HAL.
    5. Abrantes, Pedro A.L. & Wardman, Mark R., 2011. "Meta-analysis of UK values of travel time: An update," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 1-17, January.
    6. Bilal Farhan & Alan Murray, 2006. "Distance decay and coverage in facility location planning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 279-295, June.
    7. Kang-Tsung Chang & Zaher Khatib & Yanmei Ou, 2002. "Effects of Zoning Structure and Network Detail on Traffic Demand Modeling," Environment and Planning B, , vol. 29(1), pages 37-52, February.
    8. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    9. Anita Schöbel & Horst W. Hamacher & Annegret Liebers & Dorothea Wagner, 2009. "The Continuous Stop Location Problem In Public Transportation Networks," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 13-30.
    10. Ibeas, Ángel & dell'Olio, Luigi & Alonso, Borja & Sainz, Olivia, 2010. "Optimizing bus stop spacing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 446-458, May.
    11. (Sean) Qian, Zhen & Zhang, H.M., 2012. "On centroid connectors in static traffic assignment: Their effects on flow patterns and how to optimize their selections," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1489-1503.
    12. Jean-Pierre Nicolas & Patrick Bonnel & Jorge Cabrera Delgado & Cécile Godinot & George Marius Homocianu & Jean-Louis Routhier & Florence Toilier & Philippe Zuccarello, 2009. "SImuler les MoBilités Pour une Agglomération Durable. Rapport final du projet Simbad," Working Papers halshs-01697687, HAL.
    13. Daganzo, Carlos F., 1980. "Network representation, continuum approximations and a solution to the spatial aggregation problem of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 229-239, September.
    14. Daganzo, Carlos F., 1980. "An equilibrium algorithm for the spatial aggregation problem of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 221-228, September.
    15. Emile Quinet, 2010. "La pratique de l'analyse coût-bénéfice dans les transports : Le cas de la France," OECD/ITF Joint Transport Research Centre Discussion Papers 2010/17, OECD Publishing.
    16. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    17. Salling, Kim Bang & Leleur, Steen, 2015. "Accounting for the inaccuracies in demand forecasts and construction cost estimations in transport project evaluation," Transport Policy, Elsevier, vol. 38(C), pages 8-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouassim Manout & Patrick Bonnel & François Pacull, 2020. "The impact of centroid connectors on transit assignment outcomes," Public Transport, Springer, vol. 12(3), pages 611-629, October.
    2. Ouassim Manout & Patrick Bonnel, 2019. "The impact of ignoring intrazonal trips in assignment models: a stochastic approach," Transportation, Springer, vol. 46(6), pages 2397-2417, December.
    3. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    4. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    5. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2020. "Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 199-223.
    6. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    7. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    8. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    9. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    10. Diab, Ehab & Kasraian, Dena & Miller, Eric J. & Shalaby, Amer, 2020. "The rise and fall of transit ridership across Canada: Understanding the determinants," Transport Policy, Elsevier, vol. 96(C), pages 101-112.
    11. Abenoza, Roberto F. & Liu, Chengxi & Cats, Oded & Susilo, Yusak O., 2019. "What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 34-50.
    12. Chiou, Yu-Chiun & Jou, Rong-Chang & Yang, Cheng-Han, 2015. "Factors affecting public transportation usage rate: Geographically weighted regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 161-177.
    13. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    14. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    15. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    16. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    17. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    18. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    19. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    20. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:113:y:2018:i:c:p:88-100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.