IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v139y2020icp199-223.html
   My bibliography  Save this article

Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends

Author

Listed:
  • Raadsen, Mark P.H.
  • Bliemer, Michiel C.J.
  • Bell, Michael G.H.

Abstract

In this study we provide a comprehensive review of the existing literature on (dis)aggregation and decomposition methods in traffic assignment and classify them based on their characteristics. The study takes on two different perspectives. First, we explore existing methods and relate them to one or more traffic assignment components. It is found that there exists a clear separation between a demand modelling point of view, i.e., travel demand and (geographical) zoning on the one hand, and supply modelling-oriented methods, i.e. network topology and network loading, on the other. Further, we explore the existing literature on the interface between demand and supply, i.e., connector and centroid placement which is to be considered a special type of aggregation. It is found this aspect of traffic assignment has received relatively little attention in this context, even though it is shown to be of significant impact on modelling results. The second perspective in this study places the discussed aggregation methodologies in the broader perspective of clustering procedures. We do not necessarily explore clustering methods as such but mainly look at the classification of different types of clustering methods which can be projected onto the traffic assignment domain and aggregation procedures in particular. It is shown that most existing methods can be classified as supervised – or classification based – clustering procedures while relatively few studies explore other known approaches such as semi-supervised or unsupervised clustering techniques. Lastly, we discuss how aggregation techniques could be deployed to construct multi-scale modelling environments. There is however a lack of methodology to construct such models consistently. Findings are presented via an objective classification framework for existing (dis)aggregation and decomposition methods.

Suggested Citation

  • Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2020. "Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 199-223.
  • Handle: RePEc:eee:transb:v:139:y:2020:i:c:p:199-223
    DOI: 10.1016/j.trb.2020.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520303489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    2. Takashi Akamatsu, 1997. "Decomposition of Path Choice Entropy in General Transport Networks," Transportation Science, INFORMS, vol. 31(4), pages 349-362, November.
    3. Luis Martínez & José Viegas & Elisabete Silva, 2009. "A traffic analysis zone definition: a new methodology and algorithm," Transportation, Springer, vol. 36(5), pages 581-599, September.
    4. Georgios Kalafatas & Srinivas Peeta, 2009. "A Common Modeling Framework for Dynamic Traffic Assignment and Supply Chain Management Systems with Congestion Phenomena," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 541-557, Springer.
    5. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    6. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    7. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    8. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    9. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    10. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    11. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    12. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    13. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    14. Hearn, Donald W. & Lawphongpanich, Siriphong & Nguyen, Sang, 1984. "Convex programming formulations of the asymmetric traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 357-365.
    15. Jafari, Ehsan & Boyles, Stephen D., 2016. "Improved bush-based methods for network contraction," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 298-313.
    16. (Sean) Qian, Zhen & Zhang, H.M., 2012. "On centroid connectors in static traffic assignment: Their effects on flow patterns and how to optimize their selections," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1489-1503.
    17. Torbjörn Larsson & Michael Patriksson, 1992. "Simplicial Decomposition with Disaggregated Representation for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 26(1), pages 4-17, February.
    18. Michiel C. J. Bliemer & Mark P. H. Raadsen & Luuk J. N. Brederode & Michael G. H. Bell & Luc J. J. Wismans & Mike J. Smith, 2017. "Genetics of traffic assignment models for strategic transport planning," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 56-78, January.
    19. Daganzo, Carlos F., 1980. "Network representation, continuum approximations and a solution to the spatial aggregation problem of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 229-239, September.
    20. Bar-Gera, Hillel, 2010. "Traffic assignment by paired alternative segments," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1022-1046, September.
    21. Dial, Robert B., 2006. "A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 917-936, December.
    22. David F. Rogers & Robert D. Plante & Richard T. Wong & James R. Evans, 1991. "Aggregation and Disaggregation Techniques and Methodology in Optimization," Operations Research, INFORMS, vol. 39(4), pages 553-582, August.
    23. Daganzo, Carlos F., 1980. "An equilibrium algorithm for the spatial aggregation problem of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 221-228, September.
    24. Nicos Christofides, 1972. "Technical Note—Bounds for the Travelling-Salesman Problem," Operations Research, INFORMS, vol. 20(5), pages 1044-1056, October.
    25. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    26. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    27. Jafari, Ehsan & Pandey, Venktesh & Boyles, Stephen D., 2017. "A decomposition approach to the static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 270-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    2. Jafari, Ehsan & Pandey, Venktesh & Boyles, Stephen D., 2017. "A decomposition approach to the static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 270-296.
    3. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    4. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    5. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    6. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    8. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    9. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    10. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    11. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    12. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
    13. Ouassim Manout & Patrick Bonnel, 2019. "The impact of ignoring intrazonal trips in assignment models: a stochastic approach," Transportation, Springer, vol. 46(6), pages 2397-2417, December.
    14. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    15. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    16. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    17. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    18. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    19. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    20. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:139:y:2020:i:c:p:199-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.