IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v126y2019icp502-527.html
   My bibliography  Save this article

A macroscopic dynamic network loading model for multiple-reservoir system

Author

Listed:
  • Ge, Qian
  • Fukuda, Daisuke

Abstract

In this paper, we present a dynamic network loading (DNL) model that captures the traffic dynamics for multiple-reservoir networks dependent on the relationship among macroscopic traffic characteristics, and develop a numerical method based on the Godunov scheme. The proposed DNL model consists of link model and node model. The traffic dynamics of the internal paths in a reservoir are specified by a system of Lighthill–Whitham–Richards-like partial differential equations, which build on the conservation law, while the flows at the boundaries between reservoirs are determined by the supply–demand balances between upstream and downstream reservoirs. A novel numerical method is developed based on the Godunov scheme to track the movement of vehicles in the network while maintaining the relevant priority rules. In comparison with previous approaches, the proposed numerical scheme is computationally efficient, considers the non-uniform cell sizes inherent in different internal paths within a reservoir, and conserves the flow through holding and balancing rules. Numerical experiments indicate that the proposed methodology can describe the dynamics of vehicles in large-scale traffic network efficiently.

Suggested Citation

  • Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
  • Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:502-527
    DOI: 10.1016/j.trb.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517300863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    5. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    6. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    7. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    8. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    9. Nie, Yu (Marco) & Zhang, H.M., 2008. "A variational inequality formulation for inferring dynamic origin-destination travel demands," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 635-662, August.
    10. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    11. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    12. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    13. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    14. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    15. Guido Gentile, 2010. "The General Link Transmission Model for Dynamic Network Loading and a Comparison with the DUE Algorithm," Chapters, in: Chris M.J. Tampere & Francesco Viti & Lambertus H. (Ben) Immers (ed.), New Developments in Transport Planning, chapter 8, Edward Elgar Publishing.
    16. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    17. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Santos Sánchez-Cambronero & Fernando Álvarez-Bazo & Ana Rivas & Inmaculada Gallego, 2021. "Dynamic Route Flow Estimation in Road Networks Using Data from Automatic Number of Plate Recognition Sensors," Sustainability, MDPI, vol. 13(8), pages 1-30, April.
    3. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    2. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    3. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    4. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
    5. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    6. Mariotte, Guilhem & Leclercq, Ludovic & Batista, S.F.A. & Krug, Jean & Paipuri, Mahendra, 2020. "Calibration and validation of multi-reservoir MFD models: A case study in Lyon," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 62-86.
    7. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    8. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    9. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    10. Zhong, R.X. & Huang, Y.P. & Chen, C. & Lam, W.H.K. & Xu, D.B. & Sumalee, A., 2018. "Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 327-355.
    11. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    12. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
    13. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    14. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    15. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.
    16. Yao, Wenbin & Chen, Nuo & Su, Hongyang & Hu, Youwei & Jin, Sheng & Rong, Donglei, 2023. "A novel self-adaption macroscopic fundamental diagram considering network heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    17. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
    18. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    19. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    20. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:126:y:2019:i:c:p:502-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.