IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v36y2002i3p275-290.html
   My bibliography  Save this article

A non-equilibrium traffic model devoid of gas-like behavior

Author

Listed:
  • Zhang, H. M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
  • Handle: RePEc:eee:transb:v:36:y:2002:i:3:p:275-290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00050-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, H. M., 1999. "Analyses of the stability and wave properties of a new continuum traffic theory," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 399-415, August.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Papageorgiou, Markos & Blosseville, Jean-Marc & Hadj-Salem, Habib, 1989. "Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 29-47, February.
    4. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    5. Zhang, H. M., 2000. "Structural properties of solutions arising from a nonequilibrium traffic flow theory," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 583-603, September.
    6. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    7. Leo, Chin Jian & Pretty, Robert L., 1992. "Numerical simulation of macroscopic continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 26(3), pages 207-220, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, H. M., 2003. "On the consistency of a class of traffic flow models," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 101-105, January.
    2. Yi, Jingang & Lin, Hao & Alvarez, Luis & Horowitz, Roberto, 2003. "Stability of macroscopic traffic flow modeling through wavefront expansion," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 661-679, August.
    3. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    4. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    5. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    6. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    7. W.-L. Jin & H. M. Zhang, 2003. "The Inhomogeneous Kinematic Wave Traffic Flow Model as a Resonant Nonlinear System," Transportation Science, INFORMS, vol. 37(3), pages 294-311, August.
    8. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    9. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    10. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    11. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    12. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    13. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    14. Papageorgiou, Markos, 1998. "Some remarks on macroscopic traffic flow modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 323-329, September.
    15. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Zhang, H. M., 2000. "Structural properties of solutions arising from a nonequilibrium traffic flow theory," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 583-603, September.
    17. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    18. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    19. Qiao, Dianliang & Lin, Zhiyang & Guo, Mingmin & Yang, Xiaoxia & Li, Xiaoyang & Zhang, Peng & Zhang, Xiaoning, 2022. "Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    20. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:36:y:2002:i:3:p:275-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.