IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v169y2023icp108-135.html
   My bibliography  Save this article

General solution scheme for the static link transmission model

Author

Listed:
  • Raadsen, Mark P.H.
  • Bliemer, Michiel C.J.

Abstract

Most static traffic assignment models, both in the literature and in practice, are neither capacity constrained nor storage constrained. They allow flows to exceed the link capacity and/or queues to exceed the link length. Recent studies in this area have resulted in novel approaches that do consider capacity constraints, resulting in residual queues, and sometimes even storage constraints, resulting in possible queue spillback. We build upon the results of these works and in particular on the model formulated in Bliemer and Raadsen (2020) that introduced a static network loading model formulation that is both capacity constrained as well as storage constrained. Their static network loading model formulation is derived from – and consistent with - the link transmission model, a well-established dynamic network loading model. It is referred to as the static link transmission model (sLTM) in this paper. This model considers a general concave fundamental diagram for each link and a general first order node model. It is well known that ignoring queue spillback can result in significant underestimation of path travel times. This is especially true for paths that do not traverse any of the bottleneck(s) directly, but that are affected by space occupied by queues that are spilling back. The prospect of being able to capture queuing and spillback effects in static assignment provides new opportunities for improving the modelling capabilities of this paradigm. In this paper, we propose a solution scheme to sLTM capable of finding a solution on large scale networks. This is the first time that an algorithm is proposed for solving an analytical static model with queue spillback. The inclusion of a node model in a static context - while enhancing the model's capabilities – generally results in the absence of a guaranteed convergent algorithm, and introducing spillback exacerbates the issue. Given the challenges of finding a stable solution, we discuss a base solution scheme and three (configurable) extensions. Further, we investigate algorithmic settings with respect to convergence and its impact on computational cost. A large-scale case study demonstrates the feasibility of the proposed scheme by finding solutions under the most challenging of conditions in a real-world setting. We show that improving convergence capabilities negatively affects computational efficiency. To this end, several potential improvements based on our findings are discussed. Lastly, we discuss the potential of this line of research in more general terms, highlighting strengths and weaknesses following our experiences.

Suggested Citation

  • Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
  • Handle: RePEc:eee:transb:v:169:y:2023:i:c:p:108-135
    DOI: 10.1016/j.trb.2022.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152200193X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    2. Han, Ke & Piccoli, Benedetto & Friesz, Terry L., 2016. "Continuity of the path delay operator for dynamic network loading with spillback," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 211-233.
    3. Guido Gentile, 2010. "The General Link Transmission Model for Dynamic Network Loading and a Comparison with the DUE Algorithm," Chapters, in: Chris M.J. Tampere & Francesco Viti & Lambertus H. (Ben) Immers (ed.), New Developments in Transport Planning, chapter 8, Edward Elgar Publishing.
    4. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    5. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Smulders, Stef, 1990. "Control of freeway traffic flow by variable speed signs," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 111-132, April.
    8. Ennio Cascetta & Maria Nadia Postorino, 2001. "Fixed Point Approaches to the Estimation of O/D Matrices Using Traffic Counts on Congested Networks," Transportation Science, INFORMS, vol. 35(2), pages 134-147, May.
    9. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    10. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    11. Michiel C. J. Bliemer & Mark P. H. Raadsen & Luuk J. N. Brederode & Michael G. H. Bell & Luc J. J. Wismans & Mike J. Smith, 2017. "Genetics of traffic assignment models for strategic transport planning," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 56-78, January.
    12. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    13. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    14. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    15. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    16. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    17. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    18. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    19. Smith, Mike & Huang, Wei & Viti, Francesco & Tampère, Chris M.J. & Lo, Hong K., 2019. "Quasi-dynamic traffic assignment with spatial queueing, control and blocking back," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 140-166.
    20. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    21. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    22. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    2. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    3. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    4. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    5. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    6. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    7. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    8. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    9. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    10. František Kolovský & Ivana Kolingerová, 2022. "The Piecewise Constant/Linear Solution for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 22(4), pages 737-765, December.
    11. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    12. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    13. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
    14. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    15. Smith, Mike & Huang, Wei & Viti, Francesco & Tampère, Chris M.J. & Lo, Hong K., 2019. "Quasi-dynamic traffic assignment with spatial queueing, control and blocking back," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 140-166.
    16. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    17. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    18. Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
    19. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    20. Brederode, Luuk & Pel, Adam & Wismans, Luc & Rijksen, Bernike & Hoogendoorn, Serge, 2023. "Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 1-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:169:y:2023:i:c:p:108-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.