IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v44yi8-9p1022-1046.html
   My bibliography  Save this article

Traffic assignment by paired alternative segments

Author

Listed:
  • Bar-Gera, Hillel

Abstract

The static user-equilibrium (UE) traffic assignment model is widely used in practice. One main computational challenge in this model is to obtain sufficiently precise solutions suitable for scenario comparisons, as quickly as possible. An additional computational challenge stems from the need in practice to perform analyses based on route flows, which are not uniquely determined by the UE condition. Past research focused mainly on the first aspect. The purpose of this paper is to describe an algorithm that addresses both issues. The traffic assignment by paired alternative segments (TAPAS) algorithm, focuses on pairs of alternative segments as the key building block to the UE solution. A condition of proportionality, which is practically equivalent to entropy maximization, is used to choose one stable route flow solution. Numerical results for five publicly available networks, including two large-scale realistic networks, show that the algorithm can identify highly precise solutions that maintain proportionality in relatively short computation times.

Suggested Citation

  • Bar-Gera, Hillel, 2010. "Traffic assignment by paired alternative segments," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1022-1046, September.
  • Handle: RePEc:eee:transb:v:44:y::i:8-9:p:1022-1046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00135-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    2. Janson, Bruce N., 1993. "Most likely origin-destination link uses from equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 27(5), pages 333-350, October.
    3. Takashi Akamatsu, 1997. "Decomposition of Path Choice Entropy in General Transport Networks," Transportation Science, INFORMS, vol. 31(4), pages 349-362, November.
    4. Rina R. Schneur & James B. Orlin, 1998. "A Scaling Algorithm for Multicommodity Flow Problems," Operations Research, INFORMS, vol. 46(2), pages 231-246, April.
    5. Shu Lu, 2008. "Sensitivity of Static Traffic User Equilibria with Perturbations in Arc Cost Function and Travel Demand," Transportation Science, INFORMS, vol. 42(1), pages 105-123, February.
    6. Jayakrishnan, R. & Tsai, Wei T. & Prashker, Joseph N. & Rajadhyaksha, Subodh, 1994. "A Faster Path-Based Algorithm for Traffic Assignment," University of California Transportation Center, Working Papers qt2hf4541x, University of California Transportation Center.
    7. F. Babonneau & O. du Merle & J.-P. Vial, 2006. "Solving Large-Scale Linear Multicommodity Flow Problems with an Active Set Strategy and Proximal-ACCPM," Operations Research, INFORMS, vol. 54(1), pages 184-197, February.
    8. Hillel Bar-Gera, 2002. "Origin-Based Algorithm for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 36(4), pages 398-417, November.
    9. Hillel Bar-Gera, 2006. "Primal Method for Determining the Most Likely Route Flows in Large Road Networks," Transportation Science, INFORMS, vol. 40(3), pages 269-286, August.
    10. Torbjörn Larsson & Michael Patriksson, 1992. "Simplicial Decomposition with Disaggregated Representation for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 26(1), pages 4-17, February.
    11. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Dial, Robert B., 2006. "A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 917-936, December.
    13. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    14. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Chi, 2016. "New insights and improvements of using paired alternative segments for traffic assignmentAuthor-Name: Xie, Jun," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 406-424.
    2. Jun Xie & Yu (Marco) Nie, 2019. "A New Algorithm for Achieving Proportionality in User Equilibrium Traffic Assignment," Transportation Science, INFORMS, vol. 53(2), pages 566-584, March.
    3. Jafari, Ehsan & Pandey, Venktesh & Boyles, Stephen D., 2017. "A decomposition approach to the static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 270-296.
    4. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Zheng, Hong & Peeta, Srinivas, 2014. "Cost scaling based successive approximation algorithm for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 17-30.
    6. Liu, Zhiyuan & Chen, Xinyuan & Hu, Jintao & Wang, Shuaian & Zhang, Kai & Zhang, Honggang, 2023. "An alternating direction method of multipliers for solving user equilibrium problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1072-1084.
    7. Jafari, Ehsan & Boyles, Stephen D., 2016. "Improved bush-based methods for network contraction," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 298-313.
    8. Yu (Marco) Nie, 2012. "A Note on Bar-Gera's Algorithm for the Origin-Based Traffic Assignment Problem," Transportation Science, INFORMS, vol. 46(1), pages 27-38, February.
    9. Bar-Gera, Hillel & Boyce, David & Nie, Yu (Marco), 2012. "User-equilibrium route flows and the condition of proportionality," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 440-462.
    10. Xie, Jun & Nie, Yu (Marco) & Yang, Xiaoguang, 2013. "Quadratic approximation and convergence of some bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 15-30.
    11. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
    12. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    13. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    14. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
    16. Zhang, Honggang & Liu, Zhiyuan & Wang, Jian & Wu, Yunchi, 2023. "A novel flow update policy in solving traffic assignment problems: Successive over relaxation iteration method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    17. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    18. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    19. Hong Zheng, 2015. "Adaptation of Network Simplex for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 49(3), pages 543-558, August.
    20. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y::i:8-9:p:1022-1046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.