IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v40y2006i3p269-286.html
   My bibliography  Save this article

Primal Method for Determining the Most Likely Route Flows in Large Road Networks

Author

Listed:
  • Hillel Bar-Gera

    (Department of Industrial Engineering and Management, Ben-Gurion University, P.O.B. 653, Be’er-Sheva 84105, Israel)

Abstract

This paper presents a method to identify the set of routes and their flows in a user-equilibrium traffic assignment solution. We present a general consistency condition that is satisfied by any set of minimum-cost routes, and show how it can be used in choosing a set of routes that is likely to be similar to the set of user-equilibrium routes. The proposed consistency condition is also essential for finding the entropy-maximizing route flows solution, which may be regarded as the most likely one. An efficient method for finding the entropy-maximizing solution is presented. Numerical results on several networks, including one of large scale, demonstrate the effectiveness of the proposed method. In most cases the method achieves a duality gap of practically zero in a short computation time.

Suggested Citation

  • Hillel Bar-Gera, 2006. "Primal Method for Determining the Most Likely Route Flows in Large Road Networks," Transportation Science, INFORMS, vol. 40(3), pages 269-286, August.
  • Handle: RePEc:inm:ortrsc:v:40:y:2006:i:3:p:269-286
    DOI: 10.1287/trsc.1050.0142
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1050.0142
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1050.0142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harris, Britton, 2002. "Multiple paths through a network," ERSA conference papers ersa02p138, European Regional Science Association.
    2. Boyce David & Xiong Qian, 2004. "User-Optimal and System-Optimal Route Choices for a Large Road Network," Review of Network Economics, De Gruyter, vol. 3(4), pages 1-10, December.
    3. Janson, Bruce N., 1993. "Most likely origin-destination link uses from equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 27(5), pages 333-350, October.
    4. Hillel Bar-Gera, 2002. "Origin-Based Algorithm for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 36(4), pages 398-417, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Xie & Yu (Marco) Nie, 2019. "A New Algorithm for Achieving Proportionality in User Equilibrium Traffic Assignment," Transportation Science, INFORMS, vol. 53(2), pages 566-584, March.
    2. Bar-Gera, Hillel, 2010. "Traffic assignment by paired alternative segments," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1022-1046, September.
    3. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    4. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    6. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    7. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    8. Liu, Zhiyuan & Chen, Xinyuan & Hu, Jintao & Wang, Shuaian & Zhang, Kai & Zhang, Honggang, 2023. "An alternating direction method of multipliers for solving user equilibrium problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1072-1084.
    9. Bai, Yun & Hwang, Taesung & Kang, Seungmo & Ouyang, Yanfeng, 2011. "Biofuel refinery location and supply chain planning under traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 162-175, January.
    10. Zhang, Honggang & Liu, Zhiyuan & Wang, Jian & Wu, Yunchi, 2023. "A novel flow update policy in solving traffic assignment problems: Successive over relaxation iteration method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    11. Xie, Chi, 2016. "New insights and improvements of using paired alternative segments for traffic assignmentAuthor-Name: Xie, Jun," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 406-424.
    12. Yu (Marco) Nie, 2012. "A Note on Bar-Gera's Algorithm for the Origin-Based Traffic Assignment Problem," Transportation Science, INFORMS, vol. 46(1), pages 27-38, February.
    13. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    14. Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.
    15. Bar-Gera, Hillel & Boyce, David, 2006. "Solving a non-convex combined travel forecasting model by the method of successive averages with constant step sizes," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 351-367, June.
    16. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Allan Peñafiel Mera & Chandra Balijepalli, 2020. "Towards improving resilience of cities: an optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints," Transportation, Springer, vol. 47(4), pages 1809-1842, August.
    18. Bar-Gera, Hillel & Boyce, David & Nie, Yu (Marco), 2012. "User-equilibrium route flows and the condition of proportionality," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 440-462.
    19. Zhang, Honggang & Liu, Zhiyuan & Dong, Yu & Zhou, Hongyue & Liu, Pan & Chen, Jun, 2024. "A novel network equilibrium model integrating urban aerial mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    20. Jafari, Ehsan & Pandey, Venktesh & Boyles, Stephen D., 2017. "A decomposition approach to the static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 270-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:40:y:2006:i:3:p:269-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.