IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v63y2016icp170-189.html
   My bibliography  Save this article

Performance analysis of time-dependent queueing systems: Survey and classification

Author

Listed:
  • Schwarz, Justus Arne
  • Selinka, Gregor
  • Stolletz, Raik

Abstract

Many queueing systems are subject to time-dependent changes in system parameters, such as the arrival rate or number of servers. Examples include time-dependent call volumes and agents at inbound call centers, time-varying air traffic at airports, time-dependent truck arrival rates at seaports, and cyclic message volumes in computer systems.

Suggested Citation

  • Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
  • Handle: RePEc:eee:jomega:v:63:y:2016:i:c:p:170-189
    DOI: 10.1016/j.omega.2015.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048315002170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2015.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wall, A.D. & Worthington, D.J., 2007. "Time-dependent analysis of virtual waiting time behaviour in discrete time queues," European Journal of Operational Research, Elsevier, vol. 178(2), pages 482-499, April.
    2. Bernard O. Koopman, 1972. "Air-Terminal Queues under Time-Dependent Conditions," Operations Research, INFORMS, vol. 20(6), pages 1089-1114, December.
    3. Kwanghun Chung & Daiki Min, 2014. "Staffing a service system with appointment-based customer arrivals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(10), pages 1533-1543, October.
    4. Jonathan Gillard & Vincent Knight, 2014. "Using Singular Spectrum Analysis to obtain staffing level requirements in emergency units," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 735-746, May.
    5. E Chassioti & D Worthington & K Glazebrook, 2014. "Effects of state-dependent balking on multi-server non-stationary queueing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 278-290, February.
    6. Linda Green & Peter Kolesar, 1991. "The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals," Management Science, INFORMS, vol. 37(1), pages 84-97, January.
    7. Dave Worthington & A Wall, 1999. "Using the discrete time modelling approach to evaluate the time-dependent behaviour of queueing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(8), pages 777-788, August.
    8. Yifan Liu & Lawrence M. Wein, 2008. "A Queueing Analysis to Determine How Many Additional Beds Are Needed for the Detention and Removal of Illegal Aliens," Management Science, INFORMS, vol. 54(1), pages 1-15, January.
    9. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    10. Gang Chen & Zhongzhen Yang, 2010. "Optimizing time windows for managing export container arrivals at Chinese container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(1), pages 111-126, March.
    11. Kimber, R. M. & Daly, P. N., 1986. "Time-dependent queueing at road junctions: Observation and prediction," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 187-203, June.
    12. Alfa, Attahiru Sule, 1990. "Approximating queue lengths in M(t)/D/1 queues," European Journal of Operational Research, Elsevier, vol. 44(1), pages 60-66, January.
    13. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.
    14. Linda Green & Peter Kolesar & Anthony Svoronos, 1991. "Some Effects of Nonstationarity on Multiserver Markovian Queueing Systems," Operations Research, INFORMS, vol. 39(3), pages 502-511, June.
    15. Jun Kim & Sung Ha, 2012. "Advanced workforce management for effective customer services," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1715-1726, October.
    16. B. L. Foote, 1976. "A Queueing Case Study of Drive-In Banking," Interfaces, INFORMS, vol. 6(4), pages 31-37, August.
    17. George Luchak, 1957. "The Distribution of the Time Required to Reduce to Some Preassigned Level a Single-Channel Queue Characterized by a Time-Dependent Poisson-Distributed Arrival Rate and a General Class of Holding Times," Operations Research, INFORMS, vol. 5(2), pages 205-209, April.
    18. Ward Whitt, 1991. "The Pointwise Stationary Approximation for Mt/Mt/s Queues Is Asymptotically Correct As the Rates Increase," Management Science, INFORMS, vol. 37(3), pages 307-314, March.
    19. Zhe George Zhang, 2009. "Performance Analysis of a Queue with Congestion-Based Staffing Policy," Management Science, INFORMS, vol. 55(2), pages 240-251, February.
    20. E Chassioti & D J Worthington, 2004. "A new model for call centre queue management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1352-1357, December.
    21. Omosigho, S. E. & Worthington, D. J., 1985. "The single server queue with inhomogeneous arrival rate and discrete service time distribution," European Journal of Operational Research, Elsevier, vol. 22(3), pages 397-407, December.
    22. Attahiru Alfa & Barbara Margolius, 2008. "Two classes of time-inhomogeneous Markov chains: Analysis of the periodic case," Annals of Operations Research, Springer, vol. 160(1), pages 121-137, April.
    23. Mejia-Tellez, Juan & Worthington, David, 1994. "Practical methods for queue length behaviour for bulk service queues of the form M/G0,C/1 and M(t)/G0,C/1," European Journal of Operational Research, Elsevier, vol. 73(1), pages 103-113, February.
    24. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    25. Ingolfsson, Armann & Amanul Haque, Md. & Umnikov, Alex, 2002. "Accounting for time-varying queueing effects in workforce scheduling," European Journal of Operational Research, Elsevier, vol. 139(3), pages 585-597, June.
    26. Herbert P. Galliher & R. Clyde Wheeler, 1958. "Nonstationary Queuing Probabilities for Landing Congestion of Aircraft," Operations Research, INFORMS, vol. 6(2), pages 264-275, April.
    27. T. Collings & C. Stoneman, 1976. "The M / M /∞ Queue with Varying Arrival and Departure Rates," Operations Research, INFORMS, vol. 24(4), pages 760-773, August.
    28. Daniel, Joseph I. & Harback, Katherine Thomas, 2009. "Pricing the major US hub airports," Journal of Urban Economics, Elsevier, vol. 66(1), pages 33-56, July.
    29. Swaroop, Prem & Zou, Bo & Ball, Michael O. & Hansen, Mark, 2012. "Do more US airports need slot controls? A welfare based approach to determine slot levels," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1239-1259.
    30. Avi Mandelbaum & William A. Massey, 1995. "Strong Approximations for Time-Dependent Queues," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 33-64, February.
    31. Wirasinghe, S. C. & Bandara, S., 1990. "Airport gate position estimation for minimum total costs--Approximate closed form solution," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 287-297, August.
    32. Daniel, Joseph I. & Harback, Katherine Thomas, 2008. "(When) Do hub airlines internalize their self-imposed congestion delays?," Journal of Urban Economics, Elsevier, vol. 63(2), pages 583-612, March.
    33. S. C. Moore, 1975. "Approximating the Behavior of Nonstationary Single-Server Queues," Operations Research, INFORMS, vol. 23(5), pages 1011-1032, October.
    34. Brahimi, M. & Worthington, D. J., 1991. "The finite capacity multi-server queue with inhomogeneous arrival rate and discrete service time distribution -- and its application to continuous service time problems," European Journal of Operational Research, Elsevier, vol. 50(3), pages 310-324, February.
    35. Jacquillat, Alexandre & Odoni, Amedeo R., 2015. "Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 133-151.
    36. Daniel, Joseph I. & Pahwa, Munish, 2000. "Comparison of Three Empirical Models of Airport Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 47(1), pages 1-38, January.
    37. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    38. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    39. Powell, Warren B. & Simão, Hugo P., 1986. "Numerical simulation of transient bulk queues with general vehicle dispatching strategies," Transportation Research Part B: Methodological, Elsevier, vol. 20(6), pages 477-490, December.
    40. Linda V. Green & Peter J. Kolesar, 1995. "On the Accuracy of the Simple Peak Hour Approximation for Markovian Queues," Management Science, INFORMS, vol. 41(8), pages 1353-1370, August.
    41. Kuwahara, Masao, 2007. "A theory and implications on dynamic marginal cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 627-643, August.
    42. Guodong Pang & Ward Whitt, 2012. "The Impact of Dependent Service Times on Large-Scale Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 262-278, April.
    43. Grassmann, Winfried, 1977. "Transient solutions in Markovian queues : An algorithm for finding them and determining their waiting-time distributions," European Journal of Operational Research, Elsevier, vol. 1(6), pages 396-402, November.
    44. Young Ko & Natarajan Gautam, 2010. "Transient analysis of queues for peer-based multimedia content delivery," IISE Transactions, Taylor & Francis Journals, vol. 42(12), pages 881-896.
    45. Linda V. Green & Peter J. Kolesar, 1997. "The Lagged PSA for Estimating Peak Congestion in Multiserver Markovian Queues with Periodic Arrival Rates," Management Science, INFORMS, vol. 43(1), pages 80-87, January.
    46. Ingolfsson, Armann & Campello, Fernanda & Wu, Xudong & Cabral, Edgar, 2010. "Combining integer programming and the randomization method to schedule employees," European Journal of Operational Research, Elsevier, vol. 202(1), pages 153-163, April.
    47. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.
    48. George Luchak, 1956. "The Solution of the Single-Channel Queuing Equations Characterized by a Time-Dependent Poisson-Distributed Arrival Rate and a General Class of Holding Times," Operations Research, INFORMS, vol. 4(6), pages 711-732, December.
    49. Mok, Stephen K. & Shanthikumar, J. George, 1987. "A transient queueing model for Business Office with standby servers," European Journal of Operational Research, Elsevier, vol. 28(2), pages 158-174, February.
    50. Omosigho, S. E. & Worthington, D. J., 1988. "An approximation of known accuracy for single server queues with inhomogeneous arrival rate and continuous service time distribution," European Journal of Operational Research, Elsevier, vol. 33(3), pages 304-313, February.
    51. Bertsimas, Dimitris & Doan, Xuan Vinh, 2010. "Robust and data-driven approaches to call centers," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1072-1085, December.
    52. Michael H. Rothkopf & Shmuel S. Oren, 1979. "A Closure Approximation for the Nonstationary M/M/s Queue," Management Science, INFORMS, vol. 25(6), pages 522-534, June.
    53. Linda V. Green & João Soares, 2007. "Note--Computing Time-Dependent Waiting Time Probabilities in M(t)/M/s(t) Queuing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 54-61, July.
    54. Janusz Filipiak, 1984. "Dynamic Routing in a Queueing System with a Multiple Service Facility," Operations Research, INFORMS, vol. 32(5), pages 1163-1180, October.
    55. Tan, Xiaoqian & Knessl, Charles & Yang, Yongzhi (Peter), 2013. "On finite capacity queues with time dependent arrival rates," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2175-2227.
    56. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    57. Chen, Gang & Govindan, Kannan & Yang, Zhong-Zhen & Choi, Tsan-Ming & Jiang, Liping, 2013. "Terminal appointment system design by non-stationary M(t)/Ek/c(t) queueing model and genetic algorithm," International Journal of Production Economics, Elsevier, vol. 146(2), pages 694-703.
    58. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    59. M. Arns & P. Buchholz & A. Panchenko, 2010. "On the Numerical Analysis of Inhomogeneous Continuous-Time Markov Chains," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 416-432, August.
    60. Bruce Andrews & Henry Parsons, 1993. "Establishing Telephone-Agent Staffing Levels through Economic Optimization," Interfaces, INFORMS, vol. 23(2), pages 14-20, April.
    61. Ong, Kim L. & Taaffe, Michael R., 1988. "Approximating nonstationary ph(t)⧸ph(t)⧸1⧸c queueing systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 30(5), pages 441-452.
    62. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    63. Viti, Francesco & van Zuylen, Henk J., 2010. "Probabilistic models for queues at fixed control signals," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 120-135, January.
    64. Chen, Xiaoming & Zhou, Xuesong & List, George F., 2011. "Using time-varying tolls to optimize truck arrivals at ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 965-982.
    65. Flick, Allen & Liao, Ming, 2010. "A queuing system with time varying rates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 386-389, March.
    66. Peter J. Kolesar & Kenneth L. Rider & Thomas B. Crabill & Warren E. Walker, 1975. "A Queuing-Linear Programming Approach to Scheduling Police Patrol Cars," Operations Research, INFORMS, vol. 23(6), pages 1045-1062, December.
    67. Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
    68. G. F. Newell, 1979. "Airport Capacity and Delays," Transportation Science, INFORMS, vol. 13(3), pages 201-241, August.
    69. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    70. Saligrama R. Agnihothri & Patricia F. Taylor, 1991. "Staffing a Centralized Appointment Scheduling Department in Lourdes Hospital," Interfaces, INFORMS, vol. 21(5), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeifman, A. & Satin, Y. & Kiseleva, K. & Korolev, V. & Panfilova, T., 2019. "On limiting characteristics for a non-stationary two-processor heterogeneous system," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 48-65.
    2. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    3. Mahes, Roshan & Mandjes, Michel & Boon, Marko & Taylor, Peter, 2024. "Adaptive scheduling in service systems: A Dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 605-626.
    4. Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
    5. Raik Stolletz, 2022. "Optimization of time-dependent queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 481-483, April.
    6. Ekaterina Markova & Yacov Satin & Irina Kochetkova & Alexander Zeifman & Anna Sinitcina, 2020. "Queuing System with Unreliable Servers and Inhomogeneous Intensities for Analyzing the Impact of Non-Stationarity to Performance Measures of Wireless Network under Licensed Shared Access," Mathematics, MDPI, vol. 8(5), pages 1-13, May.
    7. Yacov Satin & Alexander Zeifman & Anastasia Kryukova, 2019. "On the Rate of Convergence and Limiting Characteristics for a Nonstationary Queueing Model," Mathematics, MDPI, vol. 7(8), pages 1-11, July.
    8. Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
    9. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    10. Vijayalakshmi Chetlapalli & K. S. S. Iyer & Himanshu Agrawal, 2020. "Modelling time-dependent aggregate traffic in 5G networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(4), pages 557-575, April.
    11. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    12. B. H. Margolius, 2023. "The periodic steady-state solution for queues with Erlang arrivals and service and time-varying periodic transition rates," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 45-94, February.
    13. Alexander Zeifman & Yacov Satin & Ivan Kovalev & Rostislav Razumchik & Victor Korolev, 2020. "Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    14. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    15. Zeifman, A.I. & Razumchik, R.V. & Satin, Y.A. & Kovalev, I.A., 2021. "Ergodicity bounds for the Markovian queue with time-varying transition intensities, batch arrivals and one queue skipping policy," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    16. Ad Ridder, 2022. "Rare-event analysis and simulation of queues with time-varying rates," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 545-547, April.
    17. Narayanan C. Viswanath, 2022. "Transient study of Markov models with time-dependent transition rates," Operational Research, Springer, vol. 22(3), pages 2209-2243, July.
    18. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    19. Tsiligianni, Christiana & Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2023. "A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws," European Journal of Operational Research, Elsevier, vol. 304(1), pages 42-56.
    20. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
    21. Yacov Satin & Alexander Zeifman & Alexander Sipin & Sherif I. Ammar & Janos Sztrik, 2020. "On Probability Characteristics for a Class of Queueing Models with Impatient Customers," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    22. Gregor Selinka & Raik Stolletz & Thomas I. Maindl, 2022. "Performance Approximation for Time-Dependent Queues with Generally Distributed Abandonments," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 20-38, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    2. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    3. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    4. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    5. Wall, A.D. & Worthington, D.J., 2007. "Time-dependent analysis of virtual waiting time behaviour in discrete time queues," European Journal of Operational Research, Elsevier, vol. 178(2), pages 482-499, April.
    6. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    7. Stolletz, Raik, 2008. "Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach," European Journal of Operational Research, Elsevier, vol. 190(2), pages 478-493, October.
    8. Ward Whitt & Wei You, 2019. "Time-Varying Robust Queueing," Operations Research, INFORMS, vol. 67(6), pages 1766-1782, November.
    9. Ingolfsson, Armann & Campello, Fernanda & Wu, Xudong & Cabral, Edgar, 2010. "Combining integer programming and the randomization method to schedule employees," European Journal of Operational Research, Elsevier, vol. 202(1), pages 153-163, April.
    10. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    11. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    12. Armann Ingolfsson & Elvira Akhmetshina & Susan Budge & Yongyue Li & Xudong Wu, 2007. "A Survey and Experimental Comparison of Service-Level-Approximation Methods for Nonstationary M(t)/M/s(t) Queueing Systems with Exhaustive Discipline," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 201-214, May.
    13. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    14. Wang, Haiyan & Olsen, Tava Lennon & Liu, Guiqing, 2018. "Service capacity competition with peak arrivals and delay sensitive customers," Omega, Elsevier, vol. 77(C), pages 80-95.
    15. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    16. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    17. Linda V. Green & Peter J. Kolesar, 1998. "A Note on Approximating Peak Congestion in Mt/G/\infty Queues with Sinusoidal Arrivals," Management Science, INFORMS, vol. 44(11-Part-2), pages 137-144, November.
    18. R. Bekker & A. Bruin, 2010. "Time-dependent analysis for refused admissions in clinical wards," Annals of Operations Research, Springer, vol. 178(1), pages 45-65, July.
    19. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    20. Izady, Navid & Worthington, Dave, 2012. "Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 531-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:63:y:2016:i:c:p:170-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.