IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v10y2007i2p125-137.html
   My bibliography  Save this article

Modeling the emergency cardiac in-patient flow: an application of queuing theory

Author

Listed:
  • Arnoud Bruin
  • A. Rossum
  • M. Visser
  • G. Koole

Abstract

This study investigates the bottlenecks in the emergency care chain of cardiac in-patient flow. The primary goal is to determine the optimal bed allocation over the care chain given a maximum number of refused admissions. Another objective is to provide deeper insight in the relation between natural variation in arrivals and length of stay and occupancy rates. The strong focus on raising occupancy rates of hospital management is unrealistic and counterproductive. Economies of scale cannot be neglected. An important result is that refused admissions at the First Cardiac Aid (FCA) are primarily caused by unavailability of beds downstream the care chain. Both variability in LOS and fluctuations in arrivals result in large workload variations. Techniques from operations research were successfully used to describe the complexity and dynamics of emergency in-patient flow. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
  • Handle: RePEc:kap:hcarem:v:10:y:2007:i:2:p:125-137
    DOI: 10.1007/s10729-007-9009-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-007-9009-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-007-9009-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J B Jun & S H Jacobson & J R Swisher, 1999. "Application of discrete-event simulation in health care clinics: A survey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(2), pages 109-123, February.
    2. Ridge, J. C. & Jones, S. K. & Nielsen, M. S. & Shahani, A. K., 1998. "Capacity planning for intensive care units," European Journal of Operational Research, Elsevier, vol. 105(2), pages 346-355, March.
    3. P R Harper & A K Shahani, 2002. "Modelling for the planning and management of bed capacities in hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 11-18, January.
    4. Jimmie L. Davis & William A. Massey & Ward Whitt, 1995. "Sensitivity to the Service-Time Distribution in the Nonstationary Erlang Loss Model," Management Science, INFORMS, vol. 41(6), pages 1107-1116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carri W. Chan & Vivek F. Farias & Nicholas Bambos & Gabriel J. Escobar, 2012. "Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions," Operations Research, INFORMS, vol. 60(6), pages 1323-1341, December.
    2. Veneklaas, W. & Leeftink, A.G. & van Boekel, P.H.C.M. & Hans, E.W., 2021. "On the design, implementation, and feasibility of hospital admission services: The admission lounge case," Omega, Elsevier, vol. 100(C).
    3. Matthew Gombolay & Toni Golen & Neel Shah & Julie Shah, 2019. "Queueing theoretic analysis of labor and delivery," Health Care Management Science, Springer, vol. 22(1), pages 16-33, March.
    4. Araz, Ozgur M. & Olson, David & Ramirez-Nafarrate, Adrian, 2019. "Predictive analytics for hospital admissions from the emergency department using triage information," International Journal of Production Economics, Elsevier, vol. 208(C), pages 199-207.
    5. Tom van Woensel & Frederico R B Cruz, 2014. "Optimal Routing in General Finite Multi-Server Queueing Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    6. Junwen Wang & Shichuan Quan & Jingshan Li & Amy Hollis, 2012. "Modeling and analysis of work flow and staffing level in a computed tomography division of University of Wisconsin Medical Foundation," Health Care Management Science, Springer, vol. 15(2), pages 108-120, June.
    7. F. R. B. Cruz & A. R. Duarte & G. L. Souza, 2018. "Multi-objective performance improvements of general finite single-server queueing networks," Journal of Heuristics, Springer, vol. 24(5), pages 757-781, October.
    8. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    9. Gregory Dobson & Hsiao-Hui Lee & Edieal Pinker, 2010. "A Model of ICU Bumping," Operations Research, INFORMS, vol. 58(6), pages 1564-1576, December.
    10. McClean, Sally & Gillespie, Jennifer & Garg, Lalit & Barton, Maria & Scotney, Bryan & Kullerton, Ken, 2014. "Using phase-type models to cost stroke patient care across health, social and community services," European Journal of Operational Research, Elsevier, vol. 236(1), pages 190-199.
    11. Junwen Wang & Jingshan Li & Patricia Howard, 2013. "A system model of work flow in the patient room of hospital emergency department," Health Care Management Science, Springer, vol. 16(4), pages 341-351, December.
    12. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    13. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    14. Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
    15. Gustavo Ramiro Rodríguez Jáuregui & Ana Karen González Pérez & Salvador Hernández González & Manuel Darío Hernández Ripalda, 2017. "Analysis of the emergency service applying the queueing theory," Contaduría y Administración, Accounting and Management, vol. 62(3), pages 733-745, Julio-Sep.
    16. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    17. A. Bruin & R. Bekker & L. Zanten & G. Koole, 2010. "Dimensioning hospital wards using the Erlang loss model," Annals of Operations Research, Springer, vol. 178(1), pages 23-43, July.
    18. Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.
    19. Jennifer Gillespie & Sally McClean & Lalit Garg & Maria Barton & Bryan Scotney & Ken Fullerton, 2016. "A multi-phase DES modelling framework for patient-centred care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1239-1249, October.
    20. R. Bekker & A. Bruin, 2010. "Time-dependent analysis for refused admissions in clinical wards," Annals of Operations Research, Springer, vol. 178(1), pages 45-65, July.
    21. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    2. Kim, Seung-Chul & Horowitz, Ira, 2002. "Scheduling hospital services: the efficacy of elective-surgery quotas," Omega, Elsevier, vol. 30(5), pages 335-346, October.
    3. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    4. P R Harper & S Phillips & J E Gallagher, 2005. "Geographical simulation modelling for the regional planning of oral and maxillofacial surgery across London," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 134-143, February.
    5. J D Griffiths & N Price-Lloyd & M Smithies & J E Williams, 2005. "Modelling the requirement for supplementary nurses in an intensive care unit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 126-133, February.
    6. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    7. Berta, P. & Lovaglio, P.G. & Paruolo, P. & Verzillo, S., 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand," Health, Econometrics and Data Group (HEDG) Working Papers 20/16, HEDG, c/o Department of Economics, University of York.
    8. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    9. J K Cochran & K Roche, 2008. "A queuing-based decision support methodology to estimate hospital inpatient bed demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1471-1482, November.
    10. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    11. repec:dgr:rugsom:02a63 is not listed on IDEAS
    12. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    13. T Eldabi & R J Paul & T Young, 2007. "Simulation modelling in healthcare: reviewing legacies and investigating futures," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 262-270, February.
    14. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    15. Josephine Varney & Nigel Bean & Mark Mackay, 2019. "The self-regulating nature of occupancy in ICUs: stochastic homoeostasis," Health Care Management Science, Springer, vol. 22(4), pages 615-634, December.
    16. Adrian Fletcher & Dave Worthington, 2009. "What is a ‘generic’ hospital model?—a comparison of ‘generic’ and ‘specific’ hospital models of emergency patient flows," Health Care Management Science, Springer, vol. 12(4), pages 374-391, December.
    17. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    18. Md Asaduzzaman & Thierry Chaussalet & Nicola Robertson, 2010. "A loss network model with overflow for capacity planning of a neonatal unit," Annals of Operations Research, Springer, vol. 178(1), pages 67-76, July.
    19. Akkerman, Renzo & Knip, Marrig, 2002. "Reallocation of beds to reduce waiting time for cardiac surgery," Research Report 02A63, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    20. David Oakley & Bhakti Stephan Onggo & Dave Worthington, 2020. "Symbiotic simulation for the operational management of inpatient beds: model development and validation using Δ-method," Health Care Management Science, Springer, vol. 23(1), pages 153-169, March.
    21. Dominic J. Breuer & Shashank Kapadia & Nadia Lahrichi & James C. Benneyan, 2022. "Joint robust optimization of bed capacity, nurse staffing, and care access under uncertainty," Annals of Operations Research, Springer, vol. 312(2), pages 673-689, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:10:y:2007:i:2:p:125-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.