IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v28y2016i1d10.1007_s10696-014-9209-8.html
   My bibliography  Save this article

Control problems and management policies in health systems: application to intensive care units

Author

Listed:
  • Fermín Mallor

    (Public University of Navarre)

  • Cristina Azcárate

    (Public University of Navarre)

  • Julio Barado

    (Hospital of Navarre)

Abstract

The stochastic nature of both patient arrivals and lengths of stay leads inevitably to periodic bed shortages in healthcare units. Physicians are challenged to fit demand to service capacity. If all beds are occupied eligible patients are usually referred to another ward or hospital and scheduled surgeries may be cancelled. Lack of beds may also have consequences for patients, who may be discharged in advance when the number of occupied beds is so high as to compromise the medical care of new incoming patients. In this paper we deal with the problem of obtaining efficient bed-management policies. We introduce a queuing control problem in which neither the arrival rates nor the number of servers can be modified. Bed occupancy control is addressed by modifying the service time rates, to make them dependent on the state of the system. The objective functions are two quality-of-service components: to minimize patient rejections and to minimize the length of stay shortening. The first objective has a clear mathematical formulation: minimize the probability of rejecting a patient. The second objective admits several formulations. Four different expressions, all leading to nonlinear optimization problems, are proposed. The solutions of these optimization problems define different control policies. We obtain the analytical solutions by adopting Markov-type assumptions and comparing them in terms of the two quality-of-service components. We extend these results to the general case using optimization with simulation, and propose a way to simulate general length of stay distributions enabling the inclusion of state-dependent service rates.

Suggested Citation

  • Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.
  • Handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-014-9209-8
    DOI: 10.1007/s10696-014-9209-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-014-9209-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-014-9209-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carri W. Chan & Vivek F. Farias & Nicholas Bambos & Gabriel J. Escobar, 2012. "Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions," Operations Research, INFORMS, vol. 60(6), pages 1323-1341, December.
    2. T Eldabi & R J Paul & T Young, 2007. "Simulation modelling in healthcare: reviewing legacies and investigating futures," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 262-270, February.
    3. Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
    4. De Angelis, Vanda & Felici, Giovanni & Impelluso, Paolo, 2003. "Integrating simulation and optimisation in health care centre management," European Journal of Operational Research, Elsevier, vol. 150(1), pages 101-114, October.
    5. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    6. A. Bruin & R. Bekker & L. Zanten & G. Koole, 2010. "Dimensioning hospital wards using the Erlang loss model," Annals of Operations Research, Springer, vol. 178(1), pages 23-43, July.
    7. Leleu, Hervé & Moises, James & Valdmanis, Vivian, 2012. "Optimal productive size of hospital's intensive care units," International Journal of Production Economics, Elsevier, vol. 136(2), pages 297-305.
    8. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    9. Kim, Seung-Chul & Horowitz, Ira & Young, Karl K. & Buckley, Thomas A., 1999. "Analysis of capacity management of the intensive care unit in a hospital," European Journal of Operational Research, Elsevier, vol. 115(1), pages 36-46, May.
    10. Carri W. Chan & Galit Yom-Tov & Gabriel Escobar, 2014. "When to Use Speedup: An Examination of Service Systems with Returns," Operations Research, INFORMS, vol. 62(2), pages 462-482, April.
    11. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    12. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    13. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    14. J K Cochran & K Roche, 2008. "A queuing-based decision support methodology to estimate hospital inpatient bed demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1471-1482, November.
    15. Ridge, J. C. & Jones, S. K. & Nielsen, M. S. & Shahani, A. K., 1998. "Capacity planning for intensive care units," European Journal of Operational Research, Elsevier, vol. 105(2), pages 346-355, March.
    16. C Vasilakis & A H Marshall, 2005. "Modelling nationwide hospital length of stay: opening the black box," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 862-869, July.
    17. J D Griffiths & N Price-Lloyd & M Smithies & J E Williams, 2005. "Modelling the requirement for supplementary nurses in an intensive care unit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 126-133, February.
    18. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    19. K Katsaliaki & N Mustafee, 2011. "Applications of simulation within the healthcare context," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1431-1451, August.
    20. Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
    21. David Anderson & Carter Price & Bruce Golden & Wolfgang Jank & Edward Wasil, 2011. "Examining the discharge practices of surgeons at a large medical center," Health Care Management Science, Springer, vol. 14(4), pages 338-347, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azcarate, Cristina & Esparza, Laida & Mallor, Fermin, 2020. "The problem of the last bed: Contextualization and a new simulation framework for analyzing physician decisions," Omega, Elsevier, vol. 96(C).
    2. Daniel Garcia-Vicuña & Laida Esparza & Fermin Mallor, 2022. "Hospital preparedness during epidemics using simulation: the case of COVID-19," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 213-249, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azcarate, Cristina & Esparza, Laida & Mallor, Fermin, 2020. "The problem of the last bed: Contextualization and a new simulation framework for analyzing physician decisions," Omega, Elsevier, vol. 96(C).
    2. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    3. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    4. Fermín Mallor & Cristina Azcárate & Julio Barado, 2015. "Optimal control of ICU patient discharge: from theory to implementation," Health Care Management Science, Springer, vol. 18(3), pages 234-250, September.
    5. Josephine Varney & Nigel Bean & Mark Mackay, 2019. "The self-regulating nature of occupancy in ICUs: stochastic homoeostasis," Health Care Management Science, Springer, vol. 22(4), pages 615-634, December.
    6. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    7. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    8. Jing Li & Ming Dong & Wenhui Zhao, 2015. "Admissions optimisation and premature discharge decisions in intensive care units," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7329-7342, December.
    9. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    10. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    11. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    12. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    13. Vincent Knight & Izabela Komenda & Jeff Griffiths, 2017. "Measuring the price of anarchy in critical care unit interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 630-642, June.
    14. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    15. Yin-Chi Chan & Eric W. M. Wong & Gavin Joynt & Paul Lai & Moshe Zukerman, 2018. "Overflow models for the admission of intensive care patients," Health Care Management Science, Springer, vol. 21(4), pages 554-572, December.
    16. Jie Bai & Andreas Fügener & Jochen Gönsch & Jens O. Brunner & Manfred Blobner, 2021. "Managing admission and discharge processes in intensive care units," Health Care Management Science, Springer, vol. 24(4), pages 666-685, December.
    17. Adrian Fletcher & Dave Worthington, 2009. "What is a ‘generic’ hospital model?—a comparison of ‘generic’ and ‘specific’ hospital models of emergency patient flows," Health Care Management Science, Springer, vol. 12(4), pages 374-391, December.
    18. Valdmanis, Vivian & Bernet, Patrick & Moises, James, 2010. "Hospital capacity, capability, and emergency preparedness," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1628-1634, December.
    19. Md Asaduzzaman & Thierry Chaussalet & Nicola Robertson, 2010. "A loss network model with overflow for capacity planning of a neonatal unit," Annals of Operations Research, Springer, vol. 178(1), pages 67-76, July.
    20. Silviya Valeva & Guodong Pang & Andrew J. Schaefer & Gilles Clermont, 2023. "Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 403-422, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-014-9209-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.