IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v23y1975i6p1045-1062.html
   My bibliography  Save this article

A Queuing-Linear Programming Approach to Scheduling Police Patrol Cars

Author

Listed:
  • Peter J. Kolesar

    (The New York City-Rand Institute, New York, New York)

  • Kenneth L. Rider

    (The New York City-Rand Institute, New York, New York)

  • Thomas B. Crabill

    (The New York City-Rand Institute, New York, New York)

  • Warren E. Walker

    (The New York City-Rand Institute, New York, New York)

Abstract

In any city the arrival rate of calls for police patrol-car service varies considerably through the day. Using queuing theory and integer linear programming, we present a method for scheduling patrol cars so that specified service standards are met at each hour of the day. Two models are used. The first is an M / M / n queuing model with time-dependent parameters that is solved numerically. The second is an integer linear program in which the decision variables are the number of patrol cars working each tour and the times at which they go out of service for meals. The program's constraints are determined by the output of the queuing model. Use of the method with data from the New York City Police Department indicates that it can lead to substantial improvements in police service.

Suggested Citation

  • Peter J. Kolesar & Kenneth L. Rider & Thomas B. Crabill & Warren E. Walker, 1975. "A Queuing-Linear Programming Approach to Scheduling Police Patrol Cars," Operations Research, INFORMS, vol. 23(6), pages 1045-1062, December.
  • Handle: RePEc:inm:oropre:v:23:y:1975:i:6:p:1045-1062
    DOI: 10.1287/opre.23.6.1045
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.23.6.1045
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.23.6.1045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woong-Gi Kim & Namhyuk Ham & Jae-Jun Kim, 2021. "Enhanced Subcontractors Allocation for Apartment Construction Project Applying Conceptual 4D Digital Twin Framework," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Thompson, Gary M. & Pullman, Madeleine E., 2007. "Scheduling workforce relief breaks in advance versus in real-time," European Journal of Operational Research, Elsevier, vol. 181(1), pages 139-155, August.
    4. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    5. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    6. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    7. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    8. Alexander Zeifman & Yacov Satin & Ivan Kovalev & Rostislav Razumchik & Victor Korolev, 2020. "Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    9. Thompson, Gary M. & Goodale, John C., 2006. "Variable employee productivity in workforce scheduling," European Journal of Operational Research, Elsevier, vol. 170(2), pages 376-390, April.
    10. Stolletz, Raik, 2008. "Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach," European Journal of Operational Research, Elsevier, vol. 190(2), pages 478-493, October.
    11. Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
    12. Linda V. Green & Peter J. Kolesar, 1998. "A Note on Approximating Peak Congestion in Mt/G/\infty Queues with Sinusoidal Arrivals," Management Science, INFORMS, vol. 44(11-Part-2), pages 137-144, November.
    13. Ingolfsson, Armann & Campello, Fernanda & Wu, Xudong & Cabral, Edgar, 2010. "Combining integer programming and the randomization method to schedule employees," European Journal of Operational Research, Elsevier, vol. 202(1), pages 153-163, April.
    14. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    15. Hall, Randolph W., 2002. "Incident dispatching, clearance and delay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(1), pages 1-16, January.
    16. Ward Whitt & Wei You, 2019. "Time-Varying Robust Queueing," Operations Research, INFORMS, vol. 67(6), pages 1766-1782, November.
    17. Brusco, Michael J. & Jacobs, Larry W., 2001. "Starting-time decisions in labor tour scheduling: An experimental analysis and case study," European Journal of Operational Research, Elsevier, vol. 131(3), pages 459-475, June.
    18. Ingolfsson, Armann & Amanul Haque, Md. & Umnikov, Alex, 2002. "Accounting for time-varying queueing effects in workforce scheduling," European Journal of Operational Research, Elsevier, vol. 139(3), pages 585-597, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:23:y:1975:i:6:p:1045-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.