IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v324y2025i1p290-307.html
   My bibliography  Save this article

Simulative assessment of patrol car allocation and response time

Author

Listed:
  • Cors, Tobias
  • Fliedner, Malte
  • Haase, Knut
  • Vlćek, Tobias

Abstract

Capacity planning of police resources is crucial to operating an effective and robust police service. However, due to the high operational heterogeneity and variability among different calls for service, key performance estimates that link resource allocation and utilization to emergency response times are a challenging task in and of itself. In the literature, two main instruments are proposed to provide appropriate estimates: queueing models, which yield closed-form expressions for key performance characteristics under limiting assumptions, and simulation models, which seek to capture more of the real-world structure of police operations at the cost of increased computational effort. Utilizing an extensive dataset comprising over two million calls for service, we have created a discrete-event simulation tailored to capture police operations within a major metropolitan area in Germany. Our analysis involves comparing this simulation against an implementation of the widely cited multiple car dispatch queueing model by Green and Kolesar (1989) found in the literature. Our findings underscore that our simulation model yields significantly improved estimates for key performance indicators reflective of real-world scenarios. Notably, we demonstrate the consequential impact on resource allocation resulting from these enhanced estimates. The superior accuracy of our model facilitates the development of capacity plans that align more effectively with actual workloads, consequently fostering heightened security measures and cost efficiencies for society. Additionally, our study involves rectifying discrepancies in the presentation of the queueing model and highlighting three specific areas for future research.

Suggested Citation

  • Cors, Tobias & Fliedner, Malte & Haase, Knut & Vlćek, Tobias, 2025. "Simulative assessment of patrol car allocation and response time," European Journal of Operational Research, Elsevier, vol. 324(1), pages 290-307.
  • Handle: RePEc:eee:ejores:v:324:y:2025:i:1:p:290-307
    DOI: 10.1016/j.ejor.2024.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Christian Schaack & Richard C. Larson, 1989. "An N Server Cutoff Priority Queue Where Arriving Customers Request a Random Number of Servers," Management Science, INFORMS, vol. 35(5), pages 614-634, May.
    2. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Background," Management Science, INFORMS, vol. 24(12), pages 1280-1290, August.
    3. Tobias Vlćek & Knut Haase & Malte Fliedner & Tobias Cors, 2024. "Police service district planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1029-1061, December.
    4. Peter D. Welch, 1964. "On a Generalized M / G /1 Queuing Process in Which the First Customer of Each Busy Period Receives Exceptional Service," Operations Research, INFORMS, vol. 12(5), pages 736-752, October.
    5. Prawit Ittimakin & Edward P. C. Kao, 1991. "Stationary Waiting Time Distribution of a Queue in Which Customers Require a Random Number of Servers," Operations Research, INFORMS, vol. 39(4), pages 633-638, August.
    6. Linda Green & Peter Kolesar, 1989. "Testing the Validity of a Queueing Model of Police Patrol," Management Science, INFORMS, vol. 35(2), pages 127-148, February.
    7. Alan Cobham, 1954. "Priority Assignment in Waiting Line Problems," Operations Research, INFORMS, vol. 2(1), pages 70-76, February.
    8. Linda Green, 1981. "Comparing Operating Characteristics of Queues in Which Customers Require a Random Number of Servers," Management Science, INFORMS, vol. 27(1), pages 65-74, January.
    9. Linda Green, 1984. "A Multiple Dispatch Queueing Model of Police Patrol Operations," Management Science, INFORMS, vol. 30(6), pages 653-664, June.
    10. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    11. Linda Green & Peter Kolesar, 1984. "A Comparison of the Multiple Dispatch and M/M/c Priority Queueing Models of Police Patrol," Management Science, INFORMS, vol. 30(6), pages 665-670, June.
    12. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Capabilities and Algorithms," Management Science, INFORMS, vol. 24(12), pages 1291-1300, August.
    13. Christian Schaack & Richard C. Larson, 1986. "An N -Server Cutoff Priority Queue," Operations Research, INFORMS, vol. 34(2), pages 257-266, April.
    14. Peter J. Kolesar & Kenneth L. Rider & Thomas B. Crabill & Warren E. Walker, 1975. "A Queuing-Linear Programming Approach to Scheduling Police Patrol Cars," Operations Research, INFORMS, vol. 23(6), pages 1045-1062, December.
    15. Linda Green, 1980. "A Queueing System in Which Customers Require a Random Number of Servers," Operations Research, INFORMS, vol. 28(6), pages 1335-1346, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    3. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    4. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    5. Hall, Randolph W., 2002. "Incident dispatching, clearance and delay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(1), pages 1-16, January.
    6. repec:cdl:itsrrp:qt2pp689vn is not listed on IDEAS
    7. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    8. repec:cdl:itsrrp:qt1jf6j37t is not listed on IDEAS
    9. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Nicole Adler & Alfred Hakkert & Jonathan Kornbluth & Tal Raviv & Mali Sher, 2014. "Location-allocation models for traffic police patrol vehicles on an interurban network," Annals of Operations Research, Springer, vol. 221(1), pages 9-31, October.
    11. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    12. Tobias Vlćek & Knut Haase & Malte Fliedner & Tobias Cors, 2024. "Police service district planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1029-1061, December.
    13. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    14. L. G. Afanaseva & S. A. Grishunina, 2020. "Stability conditions for a multiserver queueing system with a regenerative input flow and simultaneous service of a customer by a random number of servers," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 213-241, April.
    15. Nilay Tan{i}k Argon & Serhan Ziya, 2009. "Priority Assignment Under Imperfect Information on Customer Type Identities," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 674-693, June.
    16. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    17. Michael Dreyfuss & Yair Y. Shaki & Uri Yechiali, 2022. "The double-space parking problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1131-1147, December.
    18. Verma, Arvind, 1998. "The fractal dimension of policing," Journal of Criminal Justice, Elsevier, vol. 26(5), pages 425-435, September.
    19. Rabl, Regina & Reuter-Oppermann, Melanie & Jochem, Patrick E.P., 2024. "Charging infrastructure for electric vehicles in New Zealand," Transport Policy, Elsevier, vol. 148(C), pages 124-144.
    20. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    21. Linda V. Green & Peter J. Kolesar, 1998. "A Note on Approximating Peak Congestion in Mt/G/\infty Queues with Sinusoidal Arrivals," Management Science, INFORMS, vol. 44(11-Part-2), pages 137-144, November.
    22. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:324:y:2025:i:1:p:290-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.