IDEAS home Printed from https://ideas.repec.org/a/pch/abante/v7y2004i2p179-209.html
   My bibliography  Save this article

Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia

Author

Listed:
  • MARCOS SINGER

    (Escuela de Administración, Pontificia Universidad Católica de Chile)

  • PATRICIO DONOSO

    (Escuela de Administración, Pontificia Universidad Católica de Chile)

  • NATALIA JADUE

    (Escuela de Administración, Pontificia Universidad Católica de Chile)

Abstract

Ambulances services, taxis, pizza delivery and vehicle tows have in common a sub-process of gathering the requests, usually by call-centers, and a sub-process of execution, consisting on dispatching a vehicle to the site. In this article we model those services in an integrated way, identifying key performance indicators for the manager and the client, and the tradeoffs among those indices. We analyze the performance of Unidad Coronaria Móvil, the firm that pioneered the private ambulance services in Chile. We evaluate the main opportunities for improvement, including the reduction of lead-times, fleet enlargements and the optimization of the bases coverage.

Suggested Citation

  • Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
  • Handle: RePEc:pch:abante:v:7:y:2004:i:2:p:179-209
    as

    Download full text from publisher

    File URL: http://www.abante.cl/files/ABT/Contenidos/Vol-7-N2/Singer.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. John R. Schroeter, 1983. "A Model of Taxi Service under Fare Structure and Fleet Size Regulation," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 81-96, Spring.
    3. Linda Green & Peter Kolesar, 1989. "Testing the Validity of a Queueing Model of Police Patrol," Management Science, INFORMS, vol. 35(2), pages 127-148, February.
    4. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    5. I. D. S. Taylor & J. G. C. Templeton, 1980. "Waiting Time In a Multi-Server Cutoff-Priority Queue, and Its Application to an Urban Ambulance Service," Operations Research, INFORMS, vol. 28(5), pages 1168-1188, October.
    6. Jaume Puig‐Junoy & Marc Saez & Esther Martínez‐García, 1998. "Why do patients prefer hospital emergency visits? A nested multinomial logit analysis for patient‐initiated contacts," Health Care Management Science, Springer, vol. 1(1), pages 39-52, September.
    7. M Singer & P Donoso & S Jara, 2002. "Fleet configuration subject to stochastic demand: an application in the distribution of liquefied petroleum gas," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 961-971, September.
    8. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    9. A Weintraub & J Aboud & C Fernandez & G Laporte & E Ramirez, 1999. "An emergency vehicle dispatching system for an electric utility in Chile," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 690-696, July.
    10. Tamer Boyaci & Saibal Ray, 2003. "Product Differentiation and Capacity Cost Interaction in Time and Price Sensitive Markets," Manufacturing & Service Operations Management, INFORMS, vol. 5(1), pages 18-36, May.
    11. Peter Kolesar & Warren Walker & Jack Hausner, 1975. "Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City," Operations Research, INFORMS, vol. 23(4), pages 614-627, August.
    12. Fujiwara, Okitsugu & Makjamroen, Thanet & Gupta, Kapil Kumar, 1987. "Ambulance deployment analysis: A case study of Bangkok," European Journal of Operational Research, Elsevier, vol. 31(1), pages 9-18, July.
    13. Ward Whitt, 1992. "Understanding the Efficiency of Multi-Server Service Systems," Management Science, INFORMS, vol. 38(5), pages 708-723, May.
    14. James E. Smith & Detlof von Winterfeldt, 2004. "Anniversary Article: Decision Analysis in Management Science," Management Science, INFORMS, vol. 50(5), pages 561-574, May.
    15. Fernando Borrás & Jesús Pastor, 2002. "The Ex-Post Evaluation of the Minimum Local Reliability Level: An Enhanced Probabilistic Location Set Covering Model," Annals of Operations Research, Springer, vol. 111(1), pages 51-74, March.
    16. Michel Gendreau & Gilbert Laporte & René Séguin, 1995. "An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers," Transportation Science, INFORMS, vol. 29(2), pages 143-155, May.
    17. Jeffrey Goldberg & Ferenc Szidarovszky, 1991. "Methods for Solving Nonlinear Equations Used in Evaluating Emergency Vehicle Busy Probabilities," Operations Research, INFORMS, vol. 39(6), pages 903-916, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Singer & Patricio Donoso & Alan Scheller-Wolf, 2008. "Una Introducción A La Teoría De Colas Aplicada A La Gestión De Servicios," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 11(2), pages 93-120.
    2. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    3. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    4. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    5. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Nicola Secomandi & François Margot, 2009. "Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 57(1), pages 214-230, February.
    7. de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
    8. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    11. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    12. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    13. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    14. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    15. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    16. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    17. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    18. Shukla, Nagesh & Choudhary, A.K. & Prakash, P.K.S. & Fernandes, K.J. & Tiwari, M.K., 2013. "Algorithm portfolios for logistics optimization considering stochastic demands and mobility allowance," International Journal of Production Economics, Elsevier, vol. 141(1), pages 146-166.
    19. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    20. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.

    More about this item

    Keywords

    Logistics; Queues; Ambulances; Fleet; Chile;
    All these keywords.

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • M19 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pch:abante:v:7:y:2004:i:2:p:179-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eduardo Walker (email available below). General contact details of provider: https://edirc.repec.org/data/eapuccl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.